已知f(x)=a-
2
2x+1
(a∈R)
(1)用定義法證明函數(shù)f(x)是R上的增函數(shù);
(2)是否存在實(shí)數(shù)a使函數(shù)f(x)為奇函數(shù)?若存在,請(qǐng)求出a的值,若不存在,說明理由.
考點(diǎn):函數(shù)奇偶性的判斷,函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)直接由函數(shù)單調(diào)性的定義加以證明;
(2)由奇函數(shù)的性質(zhì)得f(0)=0,求得a的值,然后利用奇函數(shù)的定義證明a=1時(shí)函數(shù)f(x)為奇函數(shù).
解答: (1)證明:函數(shù)f(x)的定義域?yàn)镽,對(duì)任意x1,x2∈R,設(shè)x1<x2
f(x1)-f(x2)=a-
2
2x1+1
-a+
2
2x2+1
=
2•2x1+2-2•2x2-2
(2x1+1)(2x2+1)

=
2(2x1-2x2)
(2x1+1)(2x2+1)

∵y=2x是R上的增函數(shù),且x1<x2,
2x1-2x2<0
∴f(x1)-f(x2)<0.
即f(x1)<f(x2),
∴函數(shù)f(x)為R上的增函數(shù);
(2)若函數(shù)f(x)為奇函數(shù),
則f(0)=a-1=0,
∴a=1.
當(dāng)a=1時(shí),f(x)=1-
2
2x+1

∴f(-x)=
2-x-1
2-x+1
=
1-2x
1+2x
=-
2x-1
2x+1
=-f(x),
此時(shí)f(x)為奇函數(shù),滿足題意,
∴a=1.
點(diǎn)評(píng):本題考查了函數(shù)奇偶性的判斷,考查了利用定義證明函數(shù)的單調(diào)性,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y∈(0,2],且xy=2,若6-2x-y≥a(2-x)(4-y)恒成立,則實(shí)數(shù)a的取值范圍是( 。
A、(
1
2
,1]
B、(-∞,1]
C、[0,2)
D、(-∞,-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在邊長(zhǎng)為a1的正方形A1B1C1D1中,依次作無限個(gè)內(nèi)接正方形A2B2C2D2,A3B3C3D3,…,使得∠B1A2B2=∠B2A3B3=…=θ,令它們的邊長(zhǎng)依次為a2,a3,…
(1)用θ,a1表示a2及an;
(2)求
lim
n→∞
(a1+a2+…+an).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐E-ABCD中,底面ABCD為正方形,AE⊥平面CDE,二面角B-CD-E的余弦值為
4
5
,AE=3.
(Ⅰ)若F為DE的中點(diǎn),求證:BE∥平面ACF;
(Ⅱ)求直線BE與平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知-1≤x<2,求函數(shù)f(x)=3+2•3x+1-9x的值域
(2)已知f(x)=log3x,x∈[1,9],求函數(shù)y=f2(x)+f(x2)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題r(x):?x∈R,x2-2x+1-
2
>m;s(x):?x∈R,x2+mx+1>0,如果r(x)與s(x)中有且僅有一個(gè)是真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若已知函數(shù)g(x)=
mx2-3x+n
x2+1
(x∈R)的值域?yàn)閇2,8],求實(shí)數(shù)m,n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2sinθ-6
3cosθ-6
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的值域:
(1)y=|x-2|;
(2)y=|x2+1|;
(3)y=|x+2|+|2x+3|.

查看答案和解析>>

同步練習(xí)冊(cè)答案