10.已知二次函數(shù)f(x)=x2-16x+q+3
(1)當q=1時,求f(x)在[-1,9]上的值域;
(2)問:是否存在常數(shù)q(0<q<10),使得當x∈[q,10]時,f(x)的最小值為-51?若存在,求出q的值,若不存在,說明理由.

分析 (1)計算f(x)的對稱軸,判斷f(x)的單調性,從而求出f(x)的值域;
(2)對q進行討論判斷f(x)在[q,10]上的單調性,令fmin(x)=-51解出q.

解答 解:(1)q=1時,f(x)=x2-16x+4=(x-8)2-60.
∴f(x)在區(qū)間[-1,8]上遞減,在區(qū)間[8,9]上遞增,
∴f(x)max=f(-1)=21,f(x)min=f(8)=-60,
∴f(x)在[-1,9]上的值域為[-60,21].
(2)假設存在常數(shù)q(0<q<10),使得當x∈[q,10]時,f(x)的最小值為-51,
∵f(x)=x2-16x+q+3=(x-8)2+q-61,x∈[q,10]
∴當0<q<8時,f(x)min=f(8)=q-61=-51,∴q=10(舍).
當q≥8時,f(x)在區(qū)間[q,10]上單調遞增,$f{(x)_{min}}={q^2}-15q+3=-51$,
解得q=6(舍)或q=9,
故存在常數(shù)q=9,使得當x∈[q,10]時,f(x)的最小值為-51.

點評 本題考查了二次函數(shù)的單調性,分類討論思想,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=lnx+ax2
(1)討論f(x)的單調性;
(2)設a>1,若對任意x1,x2∈(0,+∞),恒有|f(x1)-f(x2)|≥4|x1-x2|,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知tanα=2且$π<α<\frac{3π}{2}$,則sinα的值是-$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.《九章算術》是我國古代數(shù)學成就的杰出代表.其中《方田》章給出計算弧田面積所用的經(jīng)驗公式為:弧田面積=$\frac{1}{2}$(弦×矢+矢2).弧田由圓弧和其所對弦所圍成,公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差.按照上述經(jīng)驗公式計算所得弧田面積與其實際面積之間存在誤差.
現(xiàn)有圓心角為$\frac{2π}{3}$,弦長等于$2\sqrt{3}$米的弧田.
(I)計算弧田的實際面積;
(II)按照《九章算術》中弧田面積的經(jīng)驗公式計算所得結果與(I)中計算的弧田實際面積相差多少平方米?(取π近似值為3,$\sqrt{3}$近似值為1.7)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知雙曲線$C:\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$滿足條件:(1)焦點為F1(-5,0),F(xiàn)2(5,0);(2)離心率為$\frac{5}{3}$,求得雙曲線C的方程為f(x,y)=0.若去掉條件(2),另加一個條件求得雙曲線C的方程仍為f(x,y)=0,則下列四個條件中,①雙曲線$C:\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$上的任意點P都滿足||PF1|-|PF2||=6;②雙曲線$C:\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$的虛軸長為4;③雙曲線$C:\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$的一個頂點與拋物線y2=6x的焦點重合;④雙曲線$C:\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$的漸近線方程為3x+4y=0.符合添加的條件共有( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.某市組織500名志愿者參加敬老活動,為方便安排任務將所有志愿者按年齡(單位:歲)分組,得到的頻率分布表如下.現(xiàn)要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人擔任聯(lián)系人.
年齡(歲)頻率
第1組[25,30)0.1
第2組[30,35)0.1
第3組[35,40)0.4
第4組[40,45)0.3
第5組[45,50]0.1
(1)應分別在第1,2,3組中抽取志愿者多少人?
(2)從這6人中隨機抽取2人擔任本次活動的宣傳員,求至少有1人年齡在第3組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.f(x)是定義在(-2,2)上的減函數(shù),若f (m-1)>f(2m-1),則實數(shù)m的取值范圍是( 。
A.(0,+∞)B.(0,$\frac{3}{2}$)C.(-1,3)D.($-\frac{1}{2}$,$\frac{3}{2}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.若實數(shù)x,y滿足2|x|-1≤y≤x+1,則z=4x-y的最小值為-3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知f(x)=$\frac{1}{2}$ax2+(b-1)x+lnx(a>0,b∈R).
(1)當a=2,b=-2時,求函數(shù)f(x)的單調區(qū)間;
(2)若函數(shù)有兩個極值點x1和x2,0<x1<2<x2<4求證:b<2a.

查看答案和解析>>

同步練習冊答案