已知△ABC的三個(gè)內(nèi)角A、B、C所對(duì)的三邊分別是a、b、c,平面向量=(1,sin(B-A)),平面向量=(sinC-sin2A,1),
(Ⅰ)如果c=2,C=,且△ABC的面積S=,求a的值;
(Ⅱ)若,判斷△ABC的形狀。
解:(Ⅰ)由余弦定理及已知條件得,
∵△ABC的面積等于
,∴ab=4,
聯(lián)立方程組得,解得a=2,b=2,
∴a=2。
(Ⅱ),

化簡(jiǎn)得,∴cosA=0或sinB-sinA=0,
當(dāng)cosA=0時(shí),,此時(shí)△ABC是直角三角形;
當(dāng)sinB-sinA=0時(shí),sinB=sinA,
由正弦定理得b=a,此時(shí)△ABC為等腰三角形;
∴△ABC是直角三角形或等腰三角形。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的三個(gè)頂點(diǎn)的A、B、C及平面內(nèi)一點(diǎn)P滿足
PA
+
PB
+
PC
=
AB
,下列結(jié)論中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的三個(gè)頂點(diǎn)A、B、C及平面內(nèi)一點(diǎn)P,若
PA
+
PB
+
PC
=
AB
,則點(diǎn)P與△ABC的位置關(guān)系是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的三個(gè)頂點(diǎn)ABC及平面內(nèi)一點(diǎn)P滿足:
PA
+
PB
+
PC
=
0
,若實(shí)數(shù)λ滿足:
AB
+
AC
=λ
AP
,則λ的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(1,3)、B(3,1)、C(-1,0),求BC邊上的高所在的直線方程.
(2)過橢圓
x2
16
+
y2
4
=1
內(nèi)一點(diǎn)M(2,1)引一條弦,使得弦被M點(diǎn)平分,求此弦所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的三個(gè)頂點(diǎn)A,B,C及平面內(nèi)一點(diǎn)P滿足:
PA
+
PB
+
PC
=
0
,若實(shí)數(shù)λ 滿足:
AB
+
AC
AP
,則λ的值為(  )
A、3
B、
2
3
C、2
D、8

查看答案和解析>>

同步練習(xí)冊(cè)答案