如圖,已知橢圓的離心率為,且經過點平行于的直線在軸上的截距為,與橢圓有A、B兩個
不同的交點
(Ⅰ) 求橢圓的方程;
(Ⅱ) 求的取值范圍;
(III)求證:直線、與軸始終圍成一個等腰三角形.
【解析】本小題主要考查橢圓的標準方程,直線與橢圓的位置關系,考查轉化與化歸的思想方法,以及學生的運算能力.
解:(Ⅰ)設橢圓方程為………1分
離心率為所以,可得
由經過點,
解得,…………………………3分
∴橢圓方程為……………………………4分
(Ⅱ)∵直線平行于,且在軸上的截距為
又
……………………………………………………5分
由……………………………………6分
∵直線l與橢圓交于A、B兩個不同點,
(III)設直線MA、MB的斜率分別為k1,k2,只需證明k1+k2=0即可…………9分
設 則
由
……………………………………………………10分
而
故直線MA、MB與x軸始終圍成一個等腰三角形.……………………14分
科目:高中數學 來源: 題型:
(本小題滿分12分)
如圖,已知橢圓的離心率為,以該橢圓上的點和橢圓的左、右焦點為頂點的三角形的周長為.一等軸雙曲線的頂點是該橢圓的焦點,設為該雙曲線上異于頂點的任一點,直線和與橢圓的交點分別為和.
(Ⅰ)求橢圓和雙曲線的標準方程;
(Ⅱ)設直線、的斜率分別為、,證明;
(Ⅲ)是否存在常數,使得恒成立?若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
(本小題滿分13分)
如圖,已知橢圓的離心率為,以該橢圓上的點和橢圓的
左、右焦點為頂點的三角形的周長為.一等軸雙曲線的頂點是該橢
圓的焦點,設為該雙曲線上異于頂點的任一點,直線和與橢圓的交點
分別 為和
(Ⅰ)求橢圓和雙曲線的標準方程;
(Ⅱ)設直線、的斜率分別為、,證明;
(Ⅲ)是否存在常數,使得恒成立?
若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源:2012屆山西大學附中高三4月月考理科數學試卷(解析版) 題型:解答題
(本小題滿分12分)如圖,已知橢圓的離心率為,以該橢圓上的點和橢圓的左、右焦點為頂點的三角形的周長為.一等軸雙曲線的頂點是該橢圓的焦點,設為該雙曲線上異于頂點的任一點,直線和與橢圓的交點分別為和.
(Ⅰ)求橢圓和雙曲線的標準方程;
(Ⅱ)設直線、的斜率分別為、,證明;
(Ⅲ)是否存在常數,使得恒成立?若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源:2013屆度黑龍江龍東地區(qū)第一學期高二期末理科數學試卷 題型:解答題
如圖,已知橢圓的離心率為,以該橢圓上的點和橢圓的左右焦點F1、F2為頂點的三角形的周長為。一等軸雙曲線的頂點是該橢圓的焦點,設P為該雙曲線上異于頂點的任一點,直線PF1和PF2與橢圓的焦點分別為A、B和C、D。
(Ⅰ)求橢圓和雙曲線的標準方程
(Ⅱ)設直線PF1、PF2的斜率分別為k1、k2,證明:k1·k2=1
(Ⅲ)是否存在常數,使得|AB|+|CD|=|AB|·|CD|恒成立?若存在,求的值,若不存在,請說明理由。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com