精英家教網 > 高中數學 > 題目詳情
某種項目的射擊比賽,開始時在距目標100米處射擊,如果命中記3分,且停止射擊,若第一次射擊未命中,可以進行第二次射擊,但目標已經在150米處,這時命中記2分,且停止射擊;若第二次仍未命中,還可以進行第三次射擊,此時目標已在200米處,若第三次命中則記1分,并停止射擊;若三次都未命中,則記0分,已知射手甲在100m處擊中目標的概率為,他的命中率與目標的距離的平方成反比,且各次射擊都是獨立的.
(1)求這名射手在三次射擊中命中目標的概率;
(2)求這名射手比賽中得分的均值.
【答案】分析:(1)由題意知本題是一個相互獨立事件同時發(fā)生的概率,記出事件,射手在三次射擊中命中目標包括射擊一次命中目標,射擊兩次第二次命中目標,射擊三次只有第三次命中目標,根據事件寫出概率.
(2)要求射手比賽中得分的均值,先要求得分的分布列,由題意知射手甲得分為ξ,它的取值是0、1、2、3,看出變量取值不同時對應的事件,根據相互獨立事件同時發(fā)生的概率公式得到結果.
解答:解:記第一、二、三次射擊命中目標分別為事件A,B,C三次均未命中目標的事件為D.
依題意
設在xm處擊中目標的概率為P(x),則,
由x=100m時,

∴k=5000,
,,

(Ⅰ)由于各次射擊都是獨立的,
∴該射手在三次射擊擊中目標的概率為

=
(Ⅱ)依題意,設射手甲得分為ξ,
,


,
∴ξ的分布列為


點評:考查運用概率知識解決實際問題的能力,相互獨立事件是指,兩事件發(fā)生的概率互不影響,而對立事件是指同一次試驗中,不會同時發(fā)生的事件,遇到求用至少來表述的事件的概率時,往往先求它的對立事件的概率.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

某種項目的射擊比賽,開始時在距目標100米處射擊,如果命中記3分,且停止射擊,若第一次射擊未命中,可以進行第二次射擊,但目標已經在150米處,這時命中記2分,且停止射擊;若第二次仍未命中,還可以進行第三次射擊,此時目標已在200米處,若第三次命中則記1分,并停止射擊;若三次都未命中,則記0分,已知射手甲在100m處擊中目標的概率為
12
,他的命中率與目標的距離的平方成反比,且各次射擊都是獨立的.
(1)求這名射手在三次射擊中命中目標的概率;
(2)求這名射手比賽中得分的均值.

查看答案和解析>>

科目:高中數學 來源: 題型:

某種項目的射擊比賽,開始時選手在距離目標100m處射擊,若命中則記3分,且停止射擊.若第一次射擊未命中,可以進行第二次射擊,但需在距離目標150m處,這時命中目標記2分,且停止射擊.若第二次仍未命中,還可以進行第三次射擊,此時需在距離目標200m處,若第三次命中則記1分,并停止射擊.若三次都未命中則記0分,并停止射擊.已知選手甲的命中率與目標的距離的平方成反比,他在100m處擊中目標的概率為
12
,且各次射擊都相互獨立.
(Ⅰ)求選手甲在三次射擊中命中目標的概率;
(Ⅱ)設選手甲在比賽中的得分為ξ,求ξ的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

某種項目的射擊比賽,開始時在距目標100m處射擊,如果命中記3分,且停止射擊;若第一次射擊未命中,可以進行第二次射擊,但目標已在150m處,這時命中記2分,且停止射擊;若第二次仍未命中,還可以進行第三次射擊,此時目標已在200m處,若第三次命中則記1分,并停止射擊;若三次都未命中,則記0分,且比賽結束.已知射手甲在100m處擊中目標的概率為
12
,他的命中率與目標的距離的平方成反比,且各次射擊都是獨立的.
(1)求射手甲在這次射擊比賽中命中目標的概率;
(2)求射手甲在這次射擊比賽中得分的數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

某種項目的射擊比賽,開始時在距目標100m處射擊,如果命中記3分,且停止射擊;若第一次射擊未擊中,可以進行第二次射擊,但目標已在150m處,這時命中記2分,且停止射擊;若第二次仍未命中,還可以進行第三射擊,此時目標已在200m處,若第三次命中記1分,并停止射擊;若三次都未命中,則記0分.已知射手甲在100m處擊中目標的概率為0.5,他的命中率與距離的平方成反比,且各次射擊都是獨立的,設這位射手在這次射擊比賽中的得分數為ξ.
(I)求ξ的分布列;
(II)求ξ的數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

某種項目的射擊比賽,開始時在距目標100米處射擊,如果命中記3分,且停止射擊; 若第一次射擊未命中,可以進行第二次射擊,但目標已經在150米處,這時命中記2分,且停止射擊; 若第二次仍未命中,還可以進行第三次射擊,此時目標已在200米處,若第三次命中則記1分,并停止射擊; 若三次都未命中,則記0分.已知射手甲在100米處擊中目標的概率為
12
,他的命中率與目標的距離的平方成反比,且各次射擊都是獨立的.
(Ⅰ)求這名射手分別在第二次、第三次射擊中命中目標的概率及三次射擊中命中目標的概率;
(Ⅱ)設這名射手在比賽中得分數為ξ,求隨機變量ξ的概率分布列和數學期望.

查看答案和解析>>

同步練習冊答案