(本小題滿分12分)
如圖,正方體的棱長為,點的中點.
解:以頂點A為原點建立如圖所示的空間直角坐標系,則
…………(2分)
(1)設(shè)是平面的一個法向量
……(4分)
…………(6分)
(2)設(shè)是平面的一個法向量,
…………(8分)
所成的大小與二面角的大小相等,
故二面角的余弦值為           …………(12分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知平行四邊形ABCD中,AB=6,AD=10,BD=8,E是線段AD的中點.沿BD將△BCD翻折到△,使得平面⊥平面ABD.

(Ⅰ)求證:平面ABD;
(Ⅱ)求直線與平面所成角的正弦值;
(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)如圖7-15,在正三棱柱ABC—A1B1C1中,各棱長都等于a,D、E分別是AC1、BB1的中點,
(1)求證:DE是異面直線AC1與BB1的公垂線段,并求其長度;
(2)求二面角E—AC1—C的大小;
(3)求點C1到平面AEC的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在棱長為1正方體ABCD-A1B1C1D1中,M和N分別為A1B1和BB1的中點
(1)求直線AM和CN所成角的余弦值;
(2)若P為B1C1的中點,求直線CN與平面MNP所成角的余弦值;
(3)P為B1C1上一點,且,當 B1D⊥面PMN時,求的值.
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
一個幾何體是由圓柱和三棱錐組合而成,點、在圓的圓周上,其正(主)視圖、側(cè)(左)視圖的面積分別為10和12,如圖3所示,其中,,
(1)求證:
(2)求二面角的平面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

,是平面內(nèi)的三點,設(shè)平面的法向量,則                .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖直角梯形OABC中,,SO=1,以O(shè)C、OA、OS分別為x軸、y軸、z軸建立直角坐標系O-xyz.
(Ⅰ)求的大。ㄓ梅慈呛瘮(shù)表示);
(Ⅱ)設(shè)

②OA與平面SBC的夾角(用反三角函數(shù)表示);
③O到平面SBC的距離.
(Ⅲ)設(shè)
           
②異面直線SC、OB的距離為              .
(注:(Ⅲ)只要求寫出答案).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

兩不重合直線l1和l2的方向向量分別為
v1
=(1,0,-1),
v2
=(-2,0,2),則l1與l2的位置關(guān)系是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在棱長為1的正四面體ABCD中,E是BC的中點,則 _  ▲   .

查看答案和解析>>

同步練習(xí)冊答案