分析 設(shè)P(x1,y1),Q(x2,y2),則3x1-y1-5=0,3x2-y2-13=0,兩式相加得3(x1+x2)-(y1+y2)-8=0,設(shè)M(x0,y0),則由中點的坐標(biāo)公式可得3x0-y0-4=0,又x0+y0>4即點M在直線x+y=4上或者其右上方區(qū)域,畫圖得到M位于以(2,2)為端點向上的射線上,數(shù)形結(jié)合可得答案.
解答 解:設(shè)P,Q兩點的坐標(biāo)為P(x1,y1),Q(x2,y2),
∵點P,Q分別在直線3x-y+5=0和3x-y-13=0上運動,
∴3x1-y1-5=0,①
3x2-y2-13=0,②
兩式相加得3(x1+x2)-(y1+y2)-8=0.
設(shè)線段PQ的中點M(x0,y0),
則x1+x2=2x0,y1+y2=2y0.
∴3x0-y0-4=0.
即y0=3x0-4.
又M點的坐標(biāo)滿足x0+y0>4,即M恒在直線x+y=4上或者其右上方區(qū)域,
∴線段PQ的中點M滿足,如圖.
聯(lián)立 $\left\{\begin{array}{l}{x+y=4}\\{y=3x-4}\end{array}\right.$,解得M(2,2),
∴M位于以(2,2)為端點向上的射線上,
當(dāng)M(2,2)時,kOM=1,
∴直線OM斜率的取值范圍是(1,3).
點評 本題考查了直線的斜率,考查了數(shù)學(xué)轉(zhuǎn)化思想方法和數(shù)形結(jié)合的解題思想方法,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {a|a≤0} | B. | {a|0≤a≤1} | C. | {a|a=1} | D. | {a|a=-1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}-1$ | B. | $\sqrt{3}-1$ | C. | $2-\sqrt{2}$ | D. | $3-\sqrt{5}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com