在正方體中,分別的中點(diǎn).
(1)求證:;
(2)已知是靠近的的四等分點(diǎn),求證:.
(1)詳見解析;(2)詳見解析
解析試題分析:(1)用普通方法不容易證且為正方體故選用空間向量法。先建立空間直角坐標(biāo)系,設(shè)出正方體的邊長得各點(diǎn)的坐標(biāo)。用向量垂直證線線垂直,再根據(jù)線面垂直的定義證得線面垂直。(2)由(1)可知,用向量證得,即,再根據(jù)線面平行的判定定理證得線面平行。
試題解析:證明:如圖所示,建立空間直角坐標(biāo)系.
設(shè)正方體的棱長為.
∵分別的中點(diǎn),
∴,,
,. 1分
(1)∵,∴. 2分
∵,,,
∴,. 3分
∵,
,
∴,. 5分
∵是平面上的兩條相交直線,∴. 6分
(2)∵是靠近的的四等分點(diǎn),∴. 7分
設(shè),則,
∴,
∴. 9分
∴,∴,
∵,且不在平面內(nèi),∴. 12分
考點(diǎn):空間向量法在立體幾何中的應(yīng)用。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四邊形ABCD為矩形,AD 平面ABE,AE=EB=BC=2,F為CE上的點(diǎn).且BF 平面ACE.
(1)求證:平面ADE平面BCE;
(2)求四棱錐E-ABCD的體積;
(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點(diǎn)N,使得MN平面DAE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在長方體中,,點(diǎn)是棱上的一個(gè)動(dòng)點(diǎn).
(1)證明:;
(2)當(dāng)為的中點(diǎn)時(shí),求點(diǎn)到面的距離;
(3)線段的長為何值時(shí),二面角的大小為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖:PA⊥平面ABCD,ABCD是矩形,PA=AB=1,AD=,點(diǎn)F是PB的中點(diǎn),點(diǎn)E在邊BC上移動(dòng)
(Ⅰ)求三棱錐E-PAD的體積;
(Ⅱ)當(dāng)點(diǎn)E為BC的中點(diǎn)時(shí),試判斷EF與平面PAC的位置關(guān)系,并說明理由;
(Ⅲ)證明:無論點(diǎn)E在邊BC的何處,都有PE⊥AF
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖1,矩形中,,,、分別為、邊上的點(diǎn),且,,將沿折起至位置(如圖2所示),連結(jié)、,其中.
(Ⅰ)求證:平面;
(Ⅱ)在線段上是否存在點(diǎn)使得平面?若存在,求出點(diǎn)的位置;若不存在,請說明理由.
(Ⅲ)求點(diǎn)到平面的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com