如圖所示,矩形中,,,,且,交于點.
(Ⅰ)求證:;
(Ⅱ)求三棱錐的體積.
(1)證明過程詳見解析;(2).
解析試題分析:本題主要考查線線垂直、線面垂直、線線平行、線面平行的判定和性質(zhì)以及三棱錐的體積等基礎(chǔ)知識,考查空間想象能力和推理論證能力以及運算能力.第一問,由于為矩形,所以是中點,由于⊥平面,利用線面垂直的性質(zhì),得,而在中,,,所以是中點,所以∥,利用線面平行的判定得∥平面;第二問,因為⊥平面,所以⊥平面,利用線面垂直的性質(zhì),所以垂直面內(nèi)的線,同理,⊥,利用線面垂直的判定,得⊥平面,所以利用第一問的結(jié)論得面,在中求出的長,在中求出的長,從而求出的面積,用等體積轉(zhuǎn)化法求.
試題解析:(1)由題意可得是的中點,連結(jié),
∵⊥平面,∴.而,∴是的中點, 2分
在中,,∴∥平面. 5分
(2)∵⊥平面,,∴⊥平面,則⊥.
又∵⊥平面,則⊥,又,∴⊥平面. 8分
∵∥.而⊥平面,∴⊥平面.∵是中點,是中點,
∴∥且==1.∴Rt△
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐中,底面是邊長為的正方形,,,且.
(Ⅰ)求證:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)棱上是否存在一點,使直線與平面所成的角是?若存在,求的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖1,已知的直徑,點、為上兩點,且,,為弧的中點.將沿直徑折起,使兩個半圓所在平面互相垂直(如圖2).
(Ⅰ)求證:;
(Ⅱ)在弧上是否存在點,使得平面?若存在,試指出點的位置;若不存在,請說明理由;
(Ⅲ)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
四棱錐P-ABCD中,側(cè)面PAD⊥底面ABCD,底面ABCD是邊長為2的正方形,又PA=PD,∠APD=60°,E、G分別是BC、PE的中點.
(1)求證:AD⊥PE;
(2)求二面角E-AD-G的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,在四棱錐中,底面四邊形是菱形,,是邊長為2的等邊三角形,,.
(Ⅰ)求證:底面;
(Ⅱ)求直線與平面所成角的大。
(Ⅲ)在線段上是否存在一點,使得∥平面?如果存在,求的值,如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com