【題目】已知函數(shù)

1,求函數(shù)的單調(diào)區(qū)間:

2)對于任意,不等式恒成立,求實數(shù)的取值范圍.

【答案】1)見解析(2

【解析】

1)求導后,按照、分類,分別解出不等式,即可得解;

2)轉化條件得對于任意,不等式恒成立,設,則,設,求導后可得上單調(diào)遞增,進而可得,使得,即,則,設,求導后可得上單調(diào)遞增,即可證,代入求出后,即可得解.

1)由題意

,

i)當時,的解集為,則的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為;

ii)當時,,則的單調(diào)增區(qū)間為,無單調(diào)減區(qū)間;

iii)當時,的解集為,則的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為

iiii)當時,的解集為,則的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.

2)由已知,問題等價于對于任意,不等式恒成立,

,則,

,則,

上,,單調(diào)遞增,

,,所以,

所以,使得,即,

上,,單調(diào)遞減;

上,單調(diào)遞增;

所以

又有,

,則有,

所以在上,單調(diào)遞增,所以

所以,

故實數(shù)的取值范圍為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線,如圖將分別繞原點逆時針旋轉,得到曲線,,.以坐標原點為極點,軸的正半軸為極軸建立極坐標系.

1)分別寫出曲線的極坐標方程;

2)設兩點,兩點(其中均不與原點重合),若四邊形的面積為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是給定的平面,設不在內(nèi)的任意兩點M,N所在的直線為l,則下列命題正確的是(

A.內(nèi)存在直線與直線l異面

B.內(nèi)存在直線與直線l相交

C.內(nèi)存在直線與直線l平行

D.存在過直線l的平面與平行

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在長方體ABCDA1B1C1D1中,AA18,AB3,AD8,點M是棱AD的中點,點N是棱AA1的中點,P是側面四邊形ADD1A1內(nèi)一動點(含邊界),若C1P∥平面CMN,則線段C1P長度的取值范圍是(  )

A.B.[4,5]C.[35]D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了檢測生產(chǎn)線上某種零件的質(zhì)量,從產(chǎn)品中隨機抽取100個零件,測量其尺寸,得到如圖所示的頻率分布直方圖.若零件尺寸落在區(qū)間之內(nèi),則認為該零件合格,否則認為不合格.其中,分別表示樣本的平均值和標準差,計算得(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表).

1)已知一個零件的尺寸是,試判斷該零件是否合格;

2)利用分層抽樣的方法從尺寸在的樣本中抽取6個零件,再從這6個零件中隨機抽取2個,求這2個零件中恰有1個尺寸小于的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知平面直角坐標系中,曲線的方程為,以原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為.若將曲線上的所有點的橫坐標縮小到原來的一半,縱坐標伸長到原來的倍,得曲線

1)寫出直線和曲線的直角坐標方程;

2)設點 直線與曲線的兩個交點分別為,,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】時代悄然來臨,為了研究中國手機市場現(xiàn)狀,中國信通院統(tǒng)計了2019年手機市場每月出貨量以及與2018年當月同比增長的情況,得到如下統(tǒng)計圖,根據(jù)該統(tǒng)計圖,下列說法錯誤的是(

A.2019年全年手機市場出貨量中,5月份出貨量最多

B.2019年下半年手機市場各月份出貨量相對于上半年各月份波動小

C.2019年全年手機市場總出貨量低于2018年全年總出貨量

D.201812月的手機出貨量低于當年8月手機出貨量

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列是等差數(shù)列,其前項和為,數(shù)列是公比大于0的等比數(shù)列,且, , .

(Ⅰ)求數(shù)列的通項公式;

(Ⅱ)令,求數(shù)列的前項和為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若,求函數(shù)的極值;

(2)當時,,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案