試求:|ab|=|a|-|b|成立的條件.

答案:略
解析:

(1)b=0時(shí),等式成立;

(2)b0時(shí),由|ab|0|a||b|,等號(hào)成立時(shí)ab

|ab|=|a||b|成立的條件是:a的長(zhǎng)度不小于|b|的長(zhǎng)度且a、b同向,或b=0


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某個(gè)體戶計(jì)劃經(jīng)銷A、B兩種商品,據(jù)調(diào)查統(tǒng)計(jì),當(dāng)投資額為x(x≥0)萬(wàn)元時(shí),在經(jīng)銷A、B商品中所獲得的收益分別為f(x)萬(wàn)元與g(x)萬(wàn)元、其中f(x)=a(x-1)+2(a>0);g(x)=6ln(x+b),(b>0)已知投資額為零時(shí),收益為零.
(1)試求出a、b的值;
(2)如果該個(gè)體戶準(zhǔn)備投入5萬(wàn)元經(jīng)營(yíng)這兩種商品,請(qǐng)你幫他制定一個(gè)資金投入方案,使他能獲得最大收益,并求出其收入的最大值.(精確到0.1,參考數(shù)據(jù):ln3≈1.10).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a、b∈R,若M=[
-1a
b3
]所對(duì)應(yīng)的變換TM把直線l:3x-2y=1變換為自身,試求實(shí)數(shù)a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

袋中裝有大小相同的黑球、白球和紅球共10個(gè),已知從袋中任意摸出1個(gè)球,得到黑球的概率是
2
5
;從袋中任意摸出2個(gè)球,至少得到1個(gè)白球的概率是
7
9

(1)求袋中各色球的個(gè)數(shù);
(2)從袋中任意摸出3個(gè)球,記得到白球的個(gè)數(shù)為ξ,求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望E(ξ)和方差D(ξ);
(3)若η=aξ+b,Eη=11,Dη=21,試求出a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)a,b∈R,若M=
-1a
b3
所對(duì)應(yīng)的變換TM把直線l:3x-2y=3變換為自身,試求實(shí)數(shù)a,b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=(x2+ax+b)ex(x∈R).
(Ⅰ)若x=1是函數(shù)f(x)的一個(gè)極值點(diǎn),試求出a關(guān)于b的關(guān)系式(用a表示b),并確定f(x)的單調(diào)區(qū)間;
(Ⅱ)在(Ⅰ)的條件下,設(shè)a>0,函數(shù)g(x)=(a2+14)ex+4.若存在ξ1,ξ2∈[0,4]使得|f(ξ1)-g(ξ2)|<1成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案