12.已知復(fù)數(shù)z足zi=-1+i,則z等于(  )
A.-1-iB.1-iC.-1+iD.1+i

分析 利用復(fù)數(shù)的運(yùn)算法則即可得出.

解答 解:∵zi=-1+i,
∴-i•zi=-i(-1+i),
∴z=i+1,
故選:D.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}-{x^2}+3x,x<0\\ ln(x+1),x≥0\end{array}\right.$,若|f(x)|≥ax,則a的取值范圍是(  )
A.(-∞,0]B.(-∞,1]C.[-3,0]D.[-3,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.執(zhí)行如圖所示的程序框圖,則輸出的S為( 。
A.2B.$\frac{1}{3}$C.-$\frac{1}{2}$D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)$f(x)=3sin(2x-\frac{π}{3}+ϕ),ϕ∈(0,π)$滿足f(|x|)=f(x),則ϕ的值為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知x,y都是正數(shù),且xy=1,則$\frac{1}{x}+\frac{4}{y}$的最小值為(  )
A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.執(zhí)行如圖所示程序圖,若N=7時(shí),則輸出的結(jié)果S的值為( 。
A.$\frac{8}{7}$B.$\frac{6}{5}$C.$\frac{7}{8}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè){an}是等差數(shù)列,{bn}是各項(xiàng)都為正數(shù)的等比數(shù)列(n∈N*),且a1=1,b1=3,已知a2+b3=30,a3+b2=14
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)cn=(an+1)•bn,Tn=c1+c2+…+cn,(n∈N*),試比較Tn與2anbn的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點(diǎn)為F,若點(diǎn)F關(guān)于雙曲線的漸近線的對(duì)稱點(diǎn)在雙曲線的右支上,則該雙曲線的離心率是( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知點(diǎn)F(-c,0)(c>0)是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的左焦點(diǎn),過F作直線與圓x2+y2=a2相切,并與漸近線交于第一象限內(nèi)一點(diǎn)P,滿足|$\overrightarrow{OF}$|=|$\overrightarrow{OP}$|,則該雙曲線的離心率等于( 。
A.$\sqrt{5}$B.2C.$\sqrt{3}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案