4.設(shè){an}是等差數(shù)列,{bn}是各項(xiàng)都為正數(shù)的等比數(shù)列(n∈N*),且a1=1,b1=3,已知a2+b3=30,a3+b2=14
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)cn=(an+1)•bn,Tn=c1+c2+…+cn,(n∈N*),試比較Tn與2anbn的大。

分析 (Ⅰ)利用等差數(shù)列與等比數(shù)列的通項(xiàng)公式即可得出.
(II)利用“錯(cuò)位相減法”、等比數(shù)列的前n項(xiàng)和公式可得Tn,通過(guò)“作差法”即可得出.

解答 解:(Ⅰ)設(shè)等差數(shù)列{an}公差為d,等比數(shù)列{bn}公比為q.
∵a1=1,b1=3,a2+b3=30,a3+b2=14,
∴$\left\{\begin{array}{l}{d+3{q}^{2}=29}\\{2d+3q=13}\end{array}\right.$,化為2q2-q-15=0,
解得:q=3,d=2.
∴an=1+2(n-1)=2n-1,bn=3n
(Ⅱ) cn=(an+1)•bn=2n•3n,
∴Tn=2(3+2×32+…+n•3n),
3Tn=2[32+2×33+…+(n-1)×3n+n•3n+1],
∴-2Tn=2(3+32+…+3n-n×3n+1)=2$[\frac{3({3}^{n}-1)}{3-1}-n×{3}^{n+1}]$=(1-2n)×3n+1-3,
∴Tn=$(n-\frac{1}{2})•{3}^{n+1}$+$\frac{3}{2}$.
又2anbn=2(2n-1)×3n
∴Tn-2anbn=$(n-\frac{1}{2})•{3}^{n+1}$+$\frac{3}{2}$-2(2n-1)×3n=$\frac{3}{2}$-$\frac{1}{2}(2n-1)•{3}^{n}$,
當(dāng)n=1時(shí),Tn=2anbn
當(dāng)n≥2時(shí),Tn<2anbn

點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、遞推關(guān)系、“作差法”,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若$sinA=2sinB,cosC=-\frac{1}{4}$,則$\frac{c}{a}$=(  )
A.$\sqrt{6}$B.$\frac{{\sqrt{6}}}{2}$C.$\sqrt{3}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.某班對(duì)八校聯(lián)考成績(jī)進(jìn)行分析,利用隨機(jī)數(shù)表法抽取樣本時(shí),先將70個(gè)同學(xué)按01,02,03…70進(jìn)行編號(hào),然后從隨機(jī)數(shù)表第9行第9列的數(shù)開始向右讀,則選出的第7個(gè)個(gè)體是( 。
(注:如表為隨機(jī)數(shù)表的第8行和第9行)
63 01 63 78 59   16 95 55 67 19   98 10 50 71 75   12 86 73 58 07   44 39 52 38 79
33 21 12 34 29   78 64 56 07 82   52 42 07 44 38   15 51 00 13 42   99 66 02 79 54.
A.07B.44C.15D.51

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知復(fù)數(shù)z足zi=-1+i,則z等于( 。
A.-1-iB.1-iC.-1+iD.1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若2+i(i為虛數(shù)單位)是關(guān)于x的實(shí)系數(shù)一元二次方程x2+ax+5=0的一個(gè)虛根,則a=-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.二項(xiàng)式(x+$\frac{1}{x}$)4展開式中的常數(shù)項(xiàng)是20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若F1,F(xiàn)2分別是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)左、右焦點(diǎn),過(guò)點(diǎn)F1的直線交雙曲線左支于A,B兩點(diǎn),若|AF1|=3|F1B|,BF1⊥BF2,則雙曲線C的漸近線方程是y=±$\frac{\sqrt{6}}{2}$x,離心率為$\frac{\sqrt{10}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)函數(shù)f(x)=x2-2x+3,g(x)=x2-x.
(1)解不等式|f(x)-g(x)|≥2016;
(2)若|f(x)-a|<2成立的充分條件是1≤x≤2,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.A,B,C是圓O上不同的三點(diǎn),線段CO與線段AB交于點(diǎn)D,若$\overrightarrow{OC}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$(λ∈R,μ∈R),則λ+μ的取值范圍是( 。
A.(1,+∞)B.(0,1)C.(1,$\sqrt{2}$]D.(-1,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案