13.已知函數(shù)f(x)=|x2-1|
(1)解不等式f(x)≤2+2x;
(2)設(shè)a>0,若關(guān)于x的不等式f(x)+5≤ax解集非空,求a的取值范圍.

分析 (1)通過討論x的范圍,解不等式即可;(2)通過討論x的范圍,去掉絕對值號,結(jié)合二次函數(shù)的性質(zhì)求出a的范圍即可.

解答 解:(1)∵f(x)≤2+2x,
∴|x2-1|≤2+2x,
x≥1或x≤-1時,x2-1≤2+2x,解得:1≤x≤3,x=-1,
-1<x<1時,1-x2≤2+2x,成立,
綜上,-1≤x≤3;
(2)①x≥1或x≤-1時,
f(x)+5≤ax,
即x2-1+5≤ax,
即x2-ax+4≤0,
令h(x)=x2-ax+4,
若不等式f(x)+5≤ax解集非空,
則△=a2-16≥0,
解得:a≥4或a≤-4,
②-1≤x≤1時,
f(x)+5≤ax,
即1-x2+5≤ax,
即x2+ax-6≥0在[-1,1]有解,
令g(x)=x2+ax-6,
若不等式f(x)+5≤ax解集非空,
則f(1)≥0即可,解得:a≥5,
綜上,a≥4或a≤-4.

點評 本題考查了解絕對值不等式問題,考查分類討論思想以及二次函數(shù)的性質(zhì),是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知曲線C的極坐標方程是ρ=2cosθ,以極點為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系,已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=2+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)).
(1)判斷直線l與曲線C的位置關(guān)系并說明理由;
(2)若直線l與拋物線x2=4y相交于A,B兩點,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.口袋中裝有2個白球和n(n≥2,n∈N*)個紅球,每次從袋中摸出2個球(每次摸球后把這2個球放回口袋中),若摸出的2個球顏色相同則為中獎,否則為不中獎.
(Ⅰ)用含n的代數(shù)式表示1次摸球中獎的概率;
(Ⅱ)若n=3,求3次摸球中恰有1次中獎的概率;
(Ⅲ)記3次摸球中恰有1次中獎的概率為f(p),當(dāng)f(p)取得最大值時,求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.非齊次線性方程組AX=B的解向量是ξ1,ξ2,…ξt,若k1ξ1+k2ξ2+…+ktξt也是AX=B的解,則k1+k2+…+kt=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.曲線$y=-\frac{{{{(x-4)}^2}}}{4}$上任意一點為A,點B(2,0)為線段AC的中點.
(Ⅰ)求動點C的軌跡f(x)的方程;
(Ⅱ)過軌跡E的焦點F作直線交軌跡E于M、N兩點,在圓x2+y2=1上是否存在一點P,使得PM、PN分別為軌跡E的切線?若存在,求出軌跡E與直線PM、PN所圍成的圖形的面積;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在吸煙與患肺病這兩個分類變量的計算中,下列說法正確的是( 。
A.若Χ2的觀測值為6.64,而P(Χ2≥6.64)=0.010,故我們有99%的把握認為吸煙與患肺病有關(guān)系,那么在100個吸煙的人中必有99人患有肺病
B.從獨立性檢驗可知有99%的把握認為吸煙與患肺病有關(guān)系時,我們說某人吸煙,那么他有99%的可能患有肺病
C.若從統(tǒng)計量中求出有95%的把握認為吸煙與患肺病有關(guān)系,是指有5%的可能性使得推判出現(xiàn)錯誤
D.以上三種說法都不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.某校為了研究“學(xué)生的性別”和“對待某項運動的喜愛程度”是否有關(guān),運用2×2列聯(lián)表進行獨立性檢驗,經(jīng)計算k=6.669,則認為“學(xué)生性別與支持活動有關(guān)系”的犯錯誤的概率不超過( 。
附:
P(K2≥k00.1000.0500.0250.0100.001
k02.706 3.8415.0246.63510.828
A.0.1%B.1%C.99%D.99.9%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知:f(x)=$\sqrt{{x}^{2}+2}$,正項數(shù)列{an}中,a1=2,an+1=f(an),數(shù)列{bn}的前n項和為Sn,且滿足an2=2n+1bn
(1)求{bn}的通項公式
(2)若不等式設(shè)2n•Sn>m•2n-2an2對?n∈N+恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.點P在圓C1:(x-4)2+(y-2)2=9,點Q在圓C2:(x+2)2+(y+1)2=4上,則|$\overrightarrow{PQ}$|的最小值是3$\sqrt{5}-5$.

查看答案和解析>>

同步練習(xí)冊答案