2.已知:f(x)=$\sqrt{{x}^{2}+2}$,正項(xiàng)數(shù)列{an}中,a1=2,an+1=f(an),數(shù)列{bn}的前n項(xiàng)和為Sn,且滿足an2=2n+1bn
(1)求{bn}的通項(xiàng)公式
(2)若不等式設(shè)2n•Sn>m•2n-2an2對(duì)?n∈N+恒成立,求m的取值范圍.

分析 (1)根據(jù)函數(shù)的特征和數(shù)列的遞推公式得到數(shù)列{an2}是以4為首項(xiàng),以2為公差的等差數(shù)列,即可求出{bn}的通項(xiàng)公式,
(2)先根據(jù)錯(cuò)位相減法求出數(shù)列數(shù)列{bn}的前n項(xiàng)和為Sn,再分離參數(shù),利用放縮法即可求出m的取值范圍.

解答 解:(1)∵f(x)=$\sqrt{{x}^{2}+2}$,正項(xiàng)數(shù)列{an}中,a1=2,an+1=f(an),
∴an+1=$\sqrt{{a}_{n}^{2}+2}$,
∴an+12=an2+2,
∵a1=2,
∴a12=4,
∴數(shù)列{an2}是以4為首項(xiàng),以2為公差的等差數(shù)列,
∴an2=4+2(n-1)=2(n+1),
∵an2=2n+1bn
∴bn=$\frac{2(n+1)}{{2}^{n+1}}$=$\frac{n+1}{{2}^{n}}$,
(2)Sn=$\frac{2}{2}$+$\frac{3}{{2}^{2}}$+$\frac{4}{{2}^{3}}$+…+$\frac{n+1}{{2}^{n}}$,
∴$\frac{1}{2}$Sn=$\frac{2}{{2}^{2}}$+$\frac{3}{{2}^{3}}$+$\frac{4}{{2}^{4}}$+…+$\frac{n}{{2}^{n}}$+$\frac{n+1}{{2}^{n+1}}$,
∴$\frac{1}{2}$Sn=$\frac{1}{2}$+$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+$\frac{1}{{2}^{4}}$+…+$\frac{1}{{2}^{n}}$-$\frac{n+1}{{2}^{n+1}}$=$\frac{1}{2}$+$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$-$\frac{n+1}{{2}^{n+1}}$=$\frac{1}{2}$+1-$\frac{1}{{2}^{n}}$-$\frac{n+1}{{2}^{n+1}}$,
∴Sn=3-$\frac{1}{{2}^{n-1}}$-$\frac{n+1}{{2}^{n}}$=3-$\frac{n+3}{{2}^{n}}$
∵2n•Sn>m•2n-2an2對(duì)?n∈N+恒成立,
∴2n•(3-$\frac{n+3}{{2}^{n}}$)>m•2n-4(n+1),對(duì)?n∈N+恒成立,
∴m<3+$\frac{3n+1}{{2}^{n}}$,而3+$\frac{3n+1}{{2}^{n}}$>3.
∴m≤3,
故m的取值范圍(-∞,3].

點(diǎn)評(píng) 本題考查數(shù)列與不等式的綜合,考查運(yùn)算求解能力,推理論證能力;考查化歸與轉(zhuǎn)化思想.對(duì)數(shù)學(xué)思維的要求比較高,有一定的探索性.綜合性強(qiáng),難度大,是高考的重點(diǎn).解題時(shí)要認(rèn)真審題,仔細(xì)解答.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知隨機(jī)變量X服從正態(tài)分布N(μ,σ2),且P(μ-2σ<X≤μ+2σ)=0.9544,P(μ-σ<X≤μ+σ)=0.6826,若μ=4,σ=1,則P(5<X≤6)=0.1359.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=|x2-1|
(1)解不等式f(x)≤2+2x;
(2)設(shè)a>0,若關(guān)于x的不等式f(x)+5≤ax解集非空,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.直線y=kx-k與拋物線y2=4x交于A,B兩點(diǎn),若|AB|=4,則弦AB的中點(diǎn)到y(tǒng)軸的距離為( 。
A.$\frac{3}{4}$B.1C.2D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=$\sqrt{3}$cos2x+sinxcosx.
(Ⅰ)求f($\frac{π}{6}$)的值;
(Ⅱ)求f(x)的單調(diào)增區(qū)間;
(Ⅲ)若α∈(0,π),f($\frac{α}{2}$)=$\frac{1}{4}$+$\frac{{\sqrt{3}}}{2}$,求sin(α+$\frac{7π}{12}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若某幾何體的三視圖如圖所示,此幾何體的體積為( 。
A.144B.112C.114D.122

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.在極坐標(biāo)系中,關(guān)于曲線C:ρ=4sin(θ-$\frac{π}{3}$)的下列判斷中正確的是( 。
A.曲線C關(guān)于點(diǎn)(2,$\frac{π}{3}$)對(duì)稱B.曲線C關(guān)于極點(diǎn)(0,0)對(duì)稱
C.曲線C關(guān)于直線θ=$\frac{5π}{6}$對(duì)稱D.曲線C關(guān)于直線θ=$\frac{π}{3}$對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.用斜二測(cè)畫(huà)法畫(huà)出水平放置的邊長(zhǎng)為1的正方形的直觀圖,則直觀圖的面積是( 。
A.1B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{2}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在直角坐標(biāo)系xOy中,以O(shè)為圓心的圓與直線x-$\sqrt{3}$y-4=0相切.
(Ⅰ)求圓O的方程;
(Ⅱ)圓O與x軸相交于A,B兩點(diǎn),圓O內(nèi)的動(dòng)點(diǎn)P使|PA|,|PO|,|PB|成等比數(shù)列,求P點(diǎn)的軌跡方程,并指出軌跡的形狀.

查看答案和解析>>

同步練習(xí)冊(cè)答案