16.已知i是虛數(shù)單位,復(fù)數(shù)z滿足$\frac{z}{1+z}$=i,則z的模是(  )
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{2}$C.1D.$\frac{1}{2}$

分析 利用復(fù)數(shù)的運(yùn)算法則和模的計(jì)算公式即可得出.

解答 解:$\frac{z}{1+z}$=i,
∴z=i+zi,
∴z=$\frac{1}{1-i}$=$\frac{1+i}{2}$=$\frac{1}{2}$+$\frac{1}{2}i$,
∴|z|=$\sqrt{\frac{1}{4}+\frac{1}{4}}$=$\frac{\sqrt{2}}{2}$,
故選:B.

點(diǎn)評 本題考查了復(fù)數(shù)的運(yùn)算法則和模的計(jì)算公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.小王的手機(jī)使用的是每月300M流量套餐,如圖記錄了小王在4月1日至4月10日這十天的流量使用情況,下列敘述中正確的是( 。
A.1日-10日這10天的平均流量小于9.0M/日
B.11日-30日這20天,如果每天的平均流量不超過11M,這個(gè)月總流量就不會(huì)超過套餐流量
C.從1日-10日這10天的流量中任選連續(xù)3天的流量,則3日,4日,5日這三天的流量的方差最大
D.從1日-10日這10天中的流量中任選連續(xù)3天的流量,則8日,9日,10日這三天的流量的方差最小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在區(qū)間[0,$\frac{3π}{4}$]上隨機(jī)取一個(gè)數(shù)x,則時(shí)間“sinx+cosx≥1”發(fā)生的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.一幾何體的三視圖如圖(網(wǎng)絡(luò)中每個(gè)正方形的邊長為1),若這個(gè)幾何體的頂點(diǎn)都在球O的表面上,則球O的表面積是20π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=|ax+1|+|2x-1|(a∈R).
(1)當(dāng)a=1時(shí),求不等式f(x)≥2的解集;
(2)若f(x)≤2x在x∈[$\frac{1}{2}$,1]時(shí)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知e為自然對數(shù)的底數(shù),若對任意的x∈[0,1],總存在唯一的y∈[-1,1],使得2x+y2ey-a=0成立,則實(shí)數(shù)a的取值范圍是( 。
A.(1+$\frac{1}{e}$,e]B.[1+$\frac{1}{e}$,e]C.(1,e]D.(2+$\frac{1}{e}$,e]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=a(x-$\frac{1}{x}$)-lnx.
(1)若a=1,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若函數(shù)f(x)在其定義域內(nèi)為增函數(shù),求a的取值范圍;
(3)求證:$\frac{2×1+1}{1×2}$+$\frac{2×2+1}{2×3}$+…+$\frac{2n+1}{n(n+1)}$>ln(n+1)(n∈N).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若奇函數(shù)y=f(x)在(0,+∞)上的圖象如圖所示,則該函數(shù)在(-∞,0)上的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在(1+$\frac{1}{x}$)(x+1)4的展開式中的常數(shù)項(xiàng)是5.

查看答案和解析>>

同步練習(xí)冊答案