【題目】已知函數(shù)f(x)=xlnx﹣ x2﹣x+a(a∈R)在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn).
(Ⅰ)求a的取值范圍;
(Ⅱ)設(shè)兩個(gè)極值點(diǎn)分別為x1 , x2 , 證明:x1x2>e2 .
【答案】解:(Ⅰ)由題意知,函數(shù)f(x)的定義域?yàn)椋?,+∞),
方程f′(x)=0在(0,+∞)有兩個(gè)不同根;
即方程lnx﹣ax=0在(0,+∞)有兩個(gè)不同根;
(解法一)轉(zhuǎn)化為函數(shù)y=lnx與函數(shù)y=ax的圖象在(0,+∞)上有兩個(gè)不同交點(diǎn),
如右圖.
可見(jiàn),若令過(guò)原點(diǎn)且切于函數(shù)y=lnx圖象的直線(xiàn)斜率為k,只須0<a<k.
令切點(diǎn)A(x0,lnx0),
故k=y′|x=x0= ,又k= ,
故 = ,
解得,x0=e,
故k= ,
故0<a< .
(解法二)轉(zhuǎn)化為函數(shù)g(x)= 與函數(shù)y=a的圖象在(0,+∞)上有兩個(gè)不同交點(diǎn).
又g′(x)= ,
即0<x<e時(shí),g′(x)>0,x>e時(shí),g′(x)<0,
故g(x)在(0,e)上單調(diào)增,在(e,+∞)上單調(diào)減.
故g(x)極大=g(e)= ;
又g(x)有且只有一個(gè)零點(diǎn)是1,且在x→0時(shí),g(x)→﹣∞,在在x→+∞時(shí),g(x)→0,
故g(x)的草圖如右圖,
可見(jiàn),要想函數(shù)g(x)= 與函數(shù)y=a的圖象在(0,+∞)上有兩個(gè)不同交點(diǎn),
只須0<a< .
(解法三)令g(x)=lnx﹣ax,從而轉(zhuǎn)化為函數(shù)g(x)有兩個(gè)不同零點(diǎn),
而g′(x)= ﹣ax= (x>0),
若a≤0,可見(jiàn)g′(x)>0在(0,+∞)上恒成立,所以g(x)在(0,+∞)單調(diào)增,
此時(shí)g(x)不可能有兩個(gè)不同零點(diǎn).
若a>0,在0<x< 時(shí),g′(x)>0,在x> 時(shí),g′(x)<0,
所以g(x)在(0, )上單調(diào)增,在( ,+∞)上單調(diào)減,從而g(x)極大=g( )=ln ﹣1,
又因?yàn)樵趚→0時(shí),g(x)→﹣∞,在在x→+∞時(shí),g(x)→﹣∞,
于是只須:g(x)極大>0,即ln ﹣1>0,所以0<a< .
綜上所述,0<a< .
(Ⅱ)由(Ⅰ)可知x1,x2分別是方程lnx﹣ax=0的兩個(gè)根,
即lnx1=ax1,lnx2=ax2,
設(shè)x1>x2,作差得ln =a(x1﹣x2),即a=
原不等式 等價(jià)于ln > ,
令 ,則t>1, ,
設(shè) , ,
∴函數(shù)g(t)在(1,+∞)上單調(diào)遞增,
∴g(t)>g(1)=0,
即不等式 成立,
故所證不等式 成立.
【解析】(Ⅰ)將函數(shù)f(x)在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn)轉(zhuǎn)化為其導(dǎo)函數(shù)在(0,+∞)有兩個(gè)不同根進(jìn)行解題;(Ⅱ)將問(wèn)題變?yōu)閷?duì)函數(shù)增減性的證明,可以先從所要證的結(jié)論出發(fā)進(jìn)行分析,進(jìn)而證明.
【考點(diǎn)精析】本題主要考查了函數(shù)的極值與導(dǎo)數(shù)的相關(guān)知識(shí)點(diǎn),需要掌握求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓:,直線(xiàn): .
(1)設(shè)點(diǎn)是直線(xiàn)上的一動(dòng)點(diǎn),過(guò)點(diǎn)作圓的兩條切線(xiàn),切點(diǎn)分別為,求四邊形的面積的最小值;
(2)過(guò)作直線(xiàn)的垂線(xiàn)交圓于點(diǎn), 為關(guān)于軸的對(duì)稱(chēng)點(diǎn),若是圓上異于的兩個(gè)不同點(diǎn),且滿(mǎn)足: ,試證明直線(xiàn)的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知, .
(1)求的解析式;
(2)求的值域;
(3)設(shè), 時(shí),對(duì)任意總有成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,函數(shù).
(1)當(dāng)時(shí),證明是奇函數(shù);
(2)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(3)當(dāng)時(shí),求函數(shù)在上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)在R上存在導(dǎo)函數(shù)f′(x),對(duì)于任意的實(shí)數(shù)x,都有f(x)=4x2﹣f(﹣x),當(dāng)x∈(﹣∞,0)時(shí),f′(x)+ <4x,若f(m+1)≤f(﹣m)+4m+2,則實(shí)數(shù)m的取值范圍是( )
A.[﹣ ,+∞)
B.[﹣ ,+∞)
C.[﹣1,+∞)
D.[﹣2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)求
(2)探究的單調(diào)性,并證明你的結(jié)論;
(3)若為奇函數(shù),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知Ω={(x,y)|0≤x≤1,0≤y≤1},A是由直線(xiàn)y=0,x=a(0<a≤1)和曲線(xiàn)y=x3圍成的曲邊三角形的平面區(qū)域,若向區(qū)域Ω上隨機(jī)投一點(diǎn)P,點(diǎn)P落在區(qū)域A內(nèi)的概率是 ,則a的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列關(guān)于回歸分析的說(shuō)法中錯(cuò)誤的是( )
A.回歸直線(xiàn)一定過(guò)樣本中心( )
B.殘差圖中殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域中,說(shuō)明選用的模型比較合適
C.兩個(gè)模型中殘差平方和越小的模型擬合的效果越好
D.甲、乙兩個(gè)模型的R2分別約為0.98和0.80,則模型乙的擬合效果更好
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓 的兩頂點(diǎn)為A,B如圖,離心率為 ,過(guò)其焦點(diǎn)F(0,1)的直線(xiàn)l與橢圓交于C,D兩點(diǎn),并與x軸交于點(diǎn)P,直線(xiàn)AC與直線(xiàn)BD交于點(diǎn)Q.
(Ⅰ)當(dāng) 時(shí),求直線(xiàn)l的方程;
(Ⅱ)當(dāng)點(diǎn)P異于A,B兩點(diǎn)時(shí),求證: 為定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com