【題目】已知,函數(shù).
(1)當(dāng)時(shí),證明是奇函數(shù);
(2)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(3)當(dāng)時(shí),求函數(shù)在上的最小值.
【答案】(1)見解析(2)增區(qū)間為, ,減區(qū)間為(3)當(dāng)時(shí), ;當(dāng)時(shí),
【解析】試題分析:(1)時(shí), ,定義域?yàn)?/span>,關(guān)于原點(diǎn)對稱,而,故是奇函數(shù).(2)時(shí), ,不同范圍上的函數(shù)解析式都是二次形式且有相同的對稱軸,因,故函數(shù)的增區(qū)間為, ,減區(qū)間為.(3)根據(jù)(2)的單調(diào)性可知,比較的大小即可得到.
解析:(1)若,則,其定義域是一切實(shí)數(shù).且有,所以是奇函數(shù).
(2)函數(shù),因?yàn)?/span>,則函數(shù)在區(qū)間遞減,在區(qū)間遞增 ,函數(shù)在區(qū)間遞增.∴綜上可知,函數(shù)的增區(qū)間為, ,減區(qū)間為.
(3)由得. 又函數(shù)在遞增,在遞減, 且, .
若,即時(shí), ;
若,即時(shí), .
∴綜上,當(dāng)時(shí), ;當(dāng)時(shí), .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過點(diǎn)M(0,1)的直線l交橢圓C: 于A,B兩點(diǎn),F(xiàn)1為橢圓的左焦點(diǎn),當(dāng)△ABF1周長最大時(shí),直線l的方程為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C過點(diǎn)M(0,-2)、N(3,1),且圓心C在直線x+2y+1=0上.
(1)求圓C的方程;
(2)設(shè)直線ax-y+1=0與圓C交于A,B兩點(diǎn),是否存在實(shí)數(shù)a,使得過點(diǎn)P(2,0)的直線l垂直平分弦AB?若存在,求出實(shí)數(shù)a的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是兩條不同的直線, 是三個(gè)不同的平面,給出下列四個(gè)命題:
①若,則 ②若,則
③若,則 ④若,則
其中正確命題的序號是( )
A. ①和② B. ②和③ C. ③和④ D. ①和④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的定義域;
(2)判斷函數(shù)的奇偶性,并說明理由;
(3)若函數(shù),求函數(shù)的零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓過點(diǎn),且與圓 ()關(guān)于軸對稱.
(I)求圓的方程;
(II)若有相互垂直的兩條直線,都過點(diǎn),且被圓所截得弦長分別是,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx﹣ x2﹣x+a(a∈R)在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn).
(Ⅰ)求a的取值范圍;
(Ⅱ)設(shè)兩個(gè)極值點(diǎn)分別為x1 , x2 , 證明:x1x2>e2 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列不等式:1+ + >1,1+ + +…+ > ,1+ + +…+ >2…,則按此規(guī)律可猜想第n個(gè)不等式為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若
(1)求的值,并寫出函數(shù)的最小正周期(不需證明);
(2)是否存在正整數(shù),使得函數(shù)在區(qū)間內(nèi)恰有個(gè)零點(diǎn)?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com