若橢圓
x2
25
+
y2
9
=1
上一點P到一個焦點的距離為5,則P到另一個焦點的距離為
 
考點:橢圓的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:首先,根據(jù)橢圓的定義,得到其長軸長,然后,結合定義,確定其距離.
解答: 解:由橢圓的方程得長軸長為10,
結合橢圓的定義得,
橢圓上一點P到一個焦點的距離為5,則P到另一個焦點的距離
為10-5=5,
故答案為:5.
點評:本題重點考查了橢圓的定義,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
|lgx|,0<x≤3
f(6-x),3<x≤6
,設方程f(x)=2-x+b(b∈R)的四個實根從小到大依次為x1,x2,x3,x4,對于滿足條件的任意一組實根,下列判斷中正確的個數(shù)為( 。
(1)0<x1x2<1或0<(6-x3)(6-x4)<1;
(2)0<x1x2<1且0<(6-x3)(6-x4)<1;
(3)1<x1x2<9或9<x3x4<25;
(4)1<x1x2<9且25<x3x4<36.
A、3B、2C、1D、0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=2|x-1|+x-1,g(x)=16x2-8x+1,記f(x)≤1的解集為M,g(x)≤4的解集為N.
(Ⅰ)求M;
(Ⅱ)當x∈M∩N時,求函數(shù)h(x)=x2f(x)+x[f(x)]2的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等軸雙曲線C:x2-y2=a2與拋物線y2=16x的準線交于A、B兩點,|AB|=4
3
,則雙曲線C的實軸長等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,BC=
1
2
AD,PA=PD,Q為AD的中點.
(1)求證:AD⊥平面PBQ;
(2)已知點M為線段PC的中點,證明:PA∥平面BMQ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在平行六面體ABCD-A1B1C1D1中,O是B1D1的中點,求證:
B1C
、
OD
OC1
是共面向量.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若兩個球的表面積之比是4:9,則它們的體積之比是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一只螞蟻從正方體ABCD-A1B1C1D1的頂點A處出發(fā),經(jīng)正方體的表面,按最短路線爬行到達頂點C1位置,則下列圖形中可以表示正方體及螞蟻最短爬行路線的正視圖可以是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

無窮等比數(shù)列{an}的各項和為
3
4
,則其首項a1的取值范圍
 

查看答案和解析>>

同步練習冊答案