7.等差數(shù)列{an}中,已知a4+a6=22,則數(shù)列{an}的前9項和S9的值為99.

分析 由等差數(shù)列的性質(zhì)可得a1+a9=a4+a6,可得數(shù)列{an}的前9項和S9=$\frac{1}{2}$×9(a1+a9),代入計算即可得到所求和.

解答 解:等差數(shù)列{an}中,
a4+a6=22,即有a1+a9=22,
則數(shù)列{an}的前9項和S9=$\frac{1}{2}$×9(a1+a9
=$\frac{1}{2}$×9×22=99.
故答案為:99.

點評 本題考查等差數(shù)列的求和公式的運用,注意運用等差數(shù)列的性質(zhì)是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{3}+6{x}^{2}+9x+3,x≤0}\\{alnx,x>0}\end{array}\right.$在[-2,2]上的最小值為-1,則實數(shù)a的取值范圍是[-$\frac{1}{ln2}$,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.從甲、乙、丙、丁四人中選3人當(dāng)代表,則甲被選上的概率為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)向量$\overrightarrow{a}$=(-1,-1,1),$\overrightarrow$=(-1,0,1),則cos<$\overrightarrow{a}$,$\overrightarrow$>=( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在△ABC中,∠ABC=$\frac{π}{3}$,邊BC在平面α內(nèi),頂點A在平面α外,直線AB與平面α所成角為θ.若平面ABC與平面α所成的二面角為$\frac{π}{3}$,則sinθ=$\frac{3\sqrt{13}}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.同時拋擲兩顆均勻的骰子,請回答以下問題:
(1)求兩個骰子都出現(xiàn)2點的概率;
(2)若同時拋擲兩顆骰子180次,其中甲骰子出現(xiàn)20次2點,乙骰子出現(xiàn)30次2點,問兩顆骰子出現(xiàn)2點是否相關(guān)?(χ2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1}+{n}_{2}+{n}_{+1}{n}_{+2}}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.“方程$\frac{{x}^{2}}{m}$$+\frac{{y}^{2}}{6-2m}$=1表示的曲線是焦點在y軸上的橢圓”的必要不充分條件是(  )
A.1<m<2B.0<m<2C.m<2D.m≥2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.某校從高一年級學(xué)生中隨機抽取100名學(xué)生,將他們期中考試的數(shù)學(xué)成績(均為整數(shù))分成六段:[40,50).[50,60),…,[90,100]后得到頻率分布直方圖(如圖所示),則分?jǐn)?shù)在[60,80)內(nèi)的人數(shù)是45.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)f(x)=x+$\frac{1}{x}$的零點個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案