設(shè)數(shù)列{an}的通項(xiàng)公式為an=n2+kn(n∈N+),若數(shù)列{an}是單調(diào)遞增數(shù)列,求實(shí)數(shù)k的取值范圍.
考點(diǎn):數(shù)列的函數(shù)特性
專題:等差數(shù)列與等比數(shù)列
分析:數(shù)列{an}是單調(diào)遞增數(shù)列,化簡(jiǎn)an+1>an(n∈N+)恒成立.通過(guò)分離參數(shù)即可得出.
解答: 解:∵數(shù)列{an}是單調(diào)遞增數(shù)列,
∴an+1>an(n∈N+)恒成立.
又an=n2+kn(n∈N+),
∴(n+1)2+k(n+1)-(n2+kn)>0恒成立,
即2n+1+k>0,
∴k>-(2n+1)(n∈N+)恒成立.
當(dāng)n=1時(shí),-(2n+1)的最大值為-3,
∴k>-3即為所求范圍.
點(diǎn)評(píng):本題考查了單調(diào)遞增數(shù)列、分離參數(shù)法,考查了推理能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,φ∈R),則“f(x)是偶函數(shù)”是“φ=2kπ+
π
2
”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
A
2
-
A
2
(2ωx+2φ),(A>0,ω>0,0<φ<
π
2
),且y=f(x)的最大值為2,其圖象相鄰兩對(duì)稱軸間的距離為2,并過(guò)點(diǎn)(1,2),
(1)求 A,ω,φ的值;
(2)計(jì)算f(1)+f(2)+…+f(2013)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解不等式:x2-a>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)二次函數(shù)f(x)=x2+bx+c(b,c∈R),已知不論α,β為何實(shí)數(shù)恒有f(sinα)≥0,f(2+cosβ)≤0
(1)求證:b+c+1=0;
(2)求證:c≥3;
(3)若函數(shù)f(sinα)的最大值為8,求b,c值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在[-1,1]上的奇函數(shù)且f(1)=1,若a、b∈[-1,1],a+b≠0,有
f(a)+f(b)
a+b
>0成立.
(1)判斷函數(shù)f(x)在[-1,1]上是增函數(shù)還是減函數(shù),并加以證明.
(2)解不等式f(x+
1
2
)>f(2x-
1
2
).
(3)若f(x)≤m2-2am+1對(duì)所有x∈[-1,1]、a∈[-1,1]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是一個(gè)漏斗形鐵管接頭,它的母線長(zhǎng)是35cm,兩底面直徑分別是50cm和20cm,制作一萬(wàn)個(gè)這樣的接頭需要多少平方米的鐵皮?(取π=3.1,結(jié)果準(zhǔn)確到1m2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α為第三象限角,若cos(α+
π
2
)=
1
5
,f(α)=
sin(
α
2
-α)
sin(α-π)
tan(α-π)
cos(3π-α)

(1)求cosα的值;
(2)求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ),x∈R其中(A>0,ω>0,0<φ<
π
2
)的周期為π,且圖象上一個(gè)最高點(diǎn)為M(
π
6
,2).
(1)求f(x)的解析式;
(2)當(dāng)x∈[
π
12
π
2
]時(shí),求f(x)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案