已知α為第三象限角,若cos(α+
π
2
)=
1
5
,f(α)=
sin(
α
2
-α)
sin(α-π)
tan(α-π)
cos(3π-α)

(1)求cosα的值;
(2)求f(α)的值.
考點:運用誘導公式化簡求值,同角三角函數(shù)基本關系的運用
專題:三角函數(shù)的求值
分析:(1)已知等式利用誘導公式化簡求出sinα的值,再利用同角三角函數(shù)間的基本關系化簡即可求出cosα的值;
(2)f(α)解析式利用誘導公式化簡,根據(jù)cosα的值求出sinα的值,代入計算即可求出值.
解答: 解:(1)∵α為第三象限角,若cos(α+
π
2
)=-sinα=
1
5
,即sinα=-
1
5

∴cosα=-
1-sin2α
=-
2
6
5
;
(2)f(α)=
cosα
-sinα
-tanα
-cosα
=
1
cosα
=-
5
6
12
點評:此題考查了運用誘導公式化簡求值,以及同角三角函數(shù)基本關系的運用,熟練掌握誘導公式是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=0,a2=-20,且對任意m、n∈N*都有a2m-1+a2n-1=2am+n-1+2(m-n)2
(Ⅰ)求a3,a5
(Ⅱ)設bn=a2n+1-a2n-1(n∈N*),證明:{bn}是等差數(shù)列;
(Ⅲ)記數(shù)列{bn}的前n項和為Sn,求正整數(shù)k,使得對任意n∈N*均有sk≤sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的通項公式為an=n2+kn(n∈N+),若數(shù)列{an}是單調(diào)遞增數(shù)列,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,AC為⊙O的直徑,OB⊥AC,弦BN交AC于點M.若OC=
3
,OM=1,則MN的長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)若
3sinα+5cosα
2sinα-7cosα
=
1
11
,求tanα;
(2)若tanα=3,求sin2α-sinαcosα+2cos2α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-ax+xlnx.
(Ⅰ)當a=3時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若不等式f(x)≥-6恒成立,求實數(shù)a的取值范圍;
(Ⅲ)在函數(shù)f(x)的定義域內(nèi)任取三個實數(shù)x1,x2,x3,設x1<x2<x3,證明:
f(x2)-f(x1)
x2-x1
f(x3)-f(x2)
x3-x2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
ax-1
ax+1
(a>0且a≠1)
(1)求y=f(x)的反函數(shù)y=f-1(x);
(2)判斷函數(shù)y=f-1(x)的奇偶性;
(3)解不等式f-1(x)>1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)f(x)=x+
a
x
+lnx,(a∈R)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某射手每次射擊擊中目標的概率是
2
3
,且各次射擊的結(jié)果互不影響.
(1)假設這名射手射擊5次,求恰有2次擊中目標的概率;
(2)假設這名射手射擊5次,求至少有3次擊中目標的概率.

查看答案和解析>>

同步練習冊答案