(本小題12分)如圖,四棱椎的底面為菱形,且,平面,的中點.
(1)求直線與平面所成角的正切值;
(2)在線段上是否存在一點,使成立?如果存在,求出的長;如果不存在,請說明理由.
(1)=
(2)

(1)如圖,連結(jié)交于點,,又底面是菱形,,連結(jié),則與平面所成的角,所以=
(2)過點,由,因為在底面上的射影為所以,又,所以
所以,所求存在,且使。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知四邊形是邊長為的正方形,分別為的中點,沿向同側(cè)折疊且與平面成直二面角,連接
(1)求證;
(2)求平面與平面所成銳角的余弦值。
                                                                                                                   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


如圖,已知四棱柱ABCD—A1B1C1D1中,A1D⊥底面ABCD,底面ABCD是邊長為1的正方形,側(cè)棱AA1=2。
(I)求證:C1D//平面ABB1A1;
(II)求直線BD1與平面A1C1D所成角的正弦值;
(Ⅲ)求二面角D—A1C1—A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分 )
如題18圖,已知四棱錐的底面是邊長為2的正方形,分別為的中點.
(Ⅰ)求直線與面所成的角;
(Ⅱ)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知、是兩個不同平面,、是兩不同直線,下列命題中的假命題是 (   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

一個長方體共一個頂點的三個面的面積分別是,,這個長方體對角線的長是( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)正方體的棱長為2 ,一個球內(nèi)切于該正方體。則這個球的體積是            。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

9.由“若直角三角形兩直角邊的長分別為,將其補成一個矩形,則根據(jù)矩形的對角線長可求得該直角三角形外接圓的半徑為”. 對于“若三棱錐三條側(cè)棱兩兩垂直,側(cè)棱長分別為”,類比上述處理方法,可得該三棱錐的外接球半徑為=    ▲   .

查看答案和解析>>

同步練習(xí)冊答案