定義在R上的奇函數(shù)f(x)在(0,+∞)上單調(diào)遞減,且f(1)=0,則不等式xf(x)≥0的解集為
 
考點(diǎn):奇偶性與單調(diào)性的綜合
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:先確定函數(shù)f(x)在(-∞,0)上單調(diào)遞減,且f(-1)=0,再將不等式等價(jià)變形,即可得到結(jié)論.
解答: 解:∵定義在R上的奇函數(shù)f(x)在(0,+∞)上單調(diào)遞減,且f(1)=0,
∴函數(shù)f(x)在(-∞,0)上單調(diào)遞減,且f(-1)=0,
∴不等式xf(x)≥0等價(jià)于
x≥0
f(x)≤f(1)
x≤0
f(x)≥f(1)

∴0≤x≤1或-1≤x≤0,
∴不等式xf(x)≥0的解集為[-1,1],
故答案為:[-1,1]
點(diǎn)評(píng):本題考查函數(shù)單調(diào)性與奇偶性的結(jié)合,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知中心在原點(diǎn)的橢圓C的左焦點(diǎn)為(-
3
,0),右頂點(diǎn)為(2,0).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l:y=x+m與橢圓C有兩個(gè)不同的交點(diǎn)A和B,
OA
OB
>2(其中O為原點(diǎn)),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

4(-3)4
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等差數(shù)列{an}中,a2=5,a6=21,記數(shù)列{
1
an
}的前n項(xiàng)和為Sn,
(Ⅰ)數(shù)列{an}的通項(xiàng)an=
 

(Ⅱ)若S2n+1-Sn
m
15
對(duì)n∈N*恒成立,則正整數(shù)m的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2013年我國(guó)汽車擁有量已超過(guò)2億(目前只有中國(guó)和美國(guó)超過(guò)2億),為了控制汽車尾氣對(duì)環(huán)境的污染,國(guó)家鼓勵(lì)和補(bǔ)貼購(gòu)買小排量汽車的消費(fèi)者,同時(shí)在部分地區(qū)采取對(duì)新車限量上號(hào).某市采取對(duì)新車限量上號(hào)政策,已知2013年年初汽車擁有量為x1(x1=100萬(wàn)輛),第n年(2013年為第1年,2014年為第2年,依此類推)年初的擁有量記為xn,該年的增長(zhǎng)量yn和xn與1-
xn
m
的乘積成正比,比例系數(shù)為λ(0<λ<1),其中m=200萬(wàn).
(1)證明:yn≤50λ;
(2)用xn表示xn+1;并說(shuō)明該市汽車總擁有量是否能控制在200萬(wàn)輛內(nèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的中心在原點(diǎn),焦點(diǎn)為F1(0,-2
2
),F(xiàn)2(0,2
2
),且離心率e=
2
2
3
,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等差數(shù)列{an}中,a4=-15,公差d=3,求數(shù)列an的前n項(xiàng)和為Sn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,sinA:sinB:sinC=2:3:4,則cosC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下面命題:
①兩兩相交的三條直線確定一個(gè)平面
②沒(méi)有交點(diǎn)的兩直線平行
③設(shè)a,b,c是空間三條直線,若a和b相交,b和c相交,則a與c相交
④四條邊都相等的四邊形是平面圖形
⑤平行于同一條直線的兩直線互相平行
其中錯(cuò)誤的命題有
 

查看答案和解析>>

同步練習(xí)冊(cè)答案