若點P到兩定點F1(-4,0),F2(4,0)的距離和是8,則動點P的軌跡為

[  ]

A.橢圓

B.線段F1F2

C.直線F1F2

D.不能確定

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:江西省高考真題 題型:解答題

設動點P到兩定點F1(-1,0 )和F2(1,0 ) 的距離分別為d1和d2,∠F1PF2=2θ,且存在常數(shù)λ(0<λ<1),使得d1d2sin2θ=λ,
(1)證明:動點P的軌跡C為雙曲線,并求出C的方程;
(2)如圖過點F2的直線與雙曲線C的右支交于A、B兩點,問:是否存在λ,使△F1AB是以點B為直角頂點的等腰直角三角形?若存在,求出λ的值;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設動點P到兩定點F1(-l,0)和F2(1,0)的距離分別為d1和d2,∠F1PF2=2θ,且存在常數(shù)λ(0<λ<1),使得d1d2 sin2θ=λ.

(1)證明:動點P的軌跡C為雙曲線,并求出C的方程;

(2)如圖,過點F2的直線與雙曲線C的右支交于A、B兩點.問:是否存在λ,使△F1AB是以點B為直角定點的等腰直角三角形?若存在,求出λ的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

22. 設動點P到兩定點F1(-l,0)和F2(1,0)的距離分別為d1d2,∠F1PF2=2θ,且存在常數(shù)λ(0<λ<1),使得d1d2 sin2θ=λ.

   (1)證明:動點P的軌跡C為雙曲線,并求出C的方程;

   (2)如圖,過點F2的直線與雙曲線C的右支交于A、B兩點.問:是否存在λ,使△F1AB是以點B為直角頂點的等腰直角三角形?若存在,求出λ的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

若點P到兩定點F1(-4,0),F(xiàn)2(4,0)的距離和是8,則動點P的軌跡為


  1. A.
    橢圓
  2. B.
    線段F1F2
  3. C.
    直線F1F2
  4. D.
    不能確定

查看答案和解析>>

同步練習冊答案