設(shè)動點(diǎn)P到兩定點(diǎn)F1(-l,0)和F2(1,0)的距離分別為d1和d2,∠F1PF2=2θ,且存在常數(shù)λ(0<λ<1),使得d1d2 sin2θ=λ.

(1)證明:動點(diǎn)P的軌跡C為雙曲線,并求出C的方程;

(2)如圖,過點(diǎn)F2的直線與雙曲線C的右支交于A、B兩點(diǎn).問:是否存在λ,使△F1AB是以點(diǎn)B為直角定點(diǎn)的等腰直角三角形?若存在,求出λ的值;若不存在,說明理由.

解:(1)在中,

(小于的常數(shù))

故動點(diǎn)的軌跡是以,為焦點(diǎn),實(shí)軸長的雙曲線.

方程為

(2)方法一:在中,設(shè),,

假設(shè)為等腰直角三角形,則

由②與③得,

由⑤得,

故存在滿足題設(shè)條件.

方法二:(1)設(shè)為等腰直角三角形,依題設(shè)可得

所以,

.①

,可設(shè)

,

.②

由①②得.③

根據(jù)雙曲線定義可得,

平方得:.④

由③④消去可解得,

故存在滿足題設(shè)條件.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出以下5個命題:
①曲線x2-(y-1)2=1按
a
=(1,-2)
平移可得曲線(x+1)2-(y-3)2=1;
②設(shè)A、B為兩個定點(diǎn),n為常數(shù),|
PA
|-|
PB
|=n
,則動點(diǎn)P的軌跡為雙曲線;
③若橢圓的左、右焦點(diǎn)分別為F1、F2,P是該橢圓上的任意一點(diǎn),延長F1P到點(diǎn)M,使|F2P|=|PM|,則點(diǎn)M的軌跡是圓;
④A、B是平面內(nèi)兩定點(diǎn),平面內(nèi)一動點(diǎn)P滿足向量
AB
AP
夾角為銳角θ,且滿足 |
PB
| |
AB
| +
PA
AB
=0
,則點(diǎn)P的軌跡是圓(除去與直線AB的交點(diǎn));
⑤已知正四面體A-BCD,動點(diǎn)P在△ABC內(nèi),且點(diǎn)P到平面BCD的距離與點(diǎn)P到點(diǎn)A的距離相等,則動點(diǎn)P的軌跡為橢圓的一部分.
其中所有真命題的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007年普通高等學(xué)校招生全國統(tǒng)一考試、文科數(shù)學(xué)(江西卷) 題型:038

設(shè)動點(diǎn)P到兩定點(diǎn)F1(-l,0)和F2(1,0)的距離分別為d1和d2,∠F1PF2=2θ,且存在常數(shù)λ(0<λ<1),使得d1d2sin2θ=λ.

(1)證明:動點(diǎn)P的軌跡C為雙曲線,并求出C的方程;

(2)如圖,過點(diǎn)F2的直線與雙曲線C的右支交于A、B兩點(diǎn).問:是否存在λ,使△F1AB是以點(diǎn)B為直角定點(diǎn)的等腰直角三角形?若存在,求出λ的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江西省高考真題 題型:解答題

設(shè)動點(diǎn)P到兩定點(diǎn)F1(-1,0 )和F2(1,0 ) 的距離分別為d1和d2,∠F1PF2=2θ,且存在常數(shù)λ(0<λ<1),使得d1d2sin2θ=λ,
(1)證明:動點(diǎn)P的軌跡C為雙曲線,并求出C的方程;
(2)如圖過點(diǎn)F2的直線與雙曲線C的右支交于A、B兩點(diǎn),問:是否存在λ,使△F1AB是以點(diǎn)B為直角頂點(diǎn)的等腰直角三角形?若存在,求出λ的值;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

22. 設(shè)動點(diǎn)P到兩定點(diǎn)F1(-l,0)和F2(1,0)的距離分別為d1d2,∠F1PF2=2θ,且存在常數(shù)λ(0<λ<1),使得d1d2 sin2θ=λ.

   (1)證明:動點(diǎn)P的軌跡C為雙曲線,并求出C的方程;

   (2)如圖,過點(diǎn)F2的直線與雙曲線C的右支交于A、B兩點(diǎn).問:是否存在λ,使△F1AB是以點(diǎn)B為直角頂點(diǎn)的等腰直角三角形?若存在,求出λ的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案