【題目】已知是定義在上的偶函數(shù),且滿(mǎn)足,若當(dāng)時(shí),,則函數(shù)在區(qū)間上零點(diǎn)的個(gè)數(shù)為 ( )

A. 2018 B. 2019 C. 4036 D. 4037

【答案】D

【解析】分析:先把問(wèn)題轉(zhuǎn)化為函數(shù)的圖像與函數(shù)y=的圖像的交點(diǎn)的個(gè)數(shù),再求函數(shù)f(x)的周期為2,再作出兩個(gè)函數(shù)的圖像觀察圖像得到零點(diǎn)個(gè)數(shù).

詳解:函數(shù)在區(qū)間上零點(diǎn)的個(gè)數(shù)函數(shù)

的圖像與函數(shù)y=的圖像的交點(diǎn)的個(gè)數(shù),

因?yàn)楹瘮?shù)f(x)是定義在 R上的偶函數(shù),且滿(mǎn)足,

即f(-x)=f(x),又因?yàn)閒(x+1)=f(1-x),所以f(x)是周期為2的偶函數(shù),

當(dāng)時(shí),,作出函數(shù)f(x)與y=的圖像如下圖,

可知每個(gè)周期內(nèi)有兩個(gè)交點(diǎn),所以函數(shù)在區(qū)間上零點(diǎn)的個(gè)數(shù)為2018×2+1=4037.

故答案為:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在邊長(zhǎng)是2的正方體ABCD﹣A1B1C1D1中,E,F(xiàn)分別為AB,A1C的中點(diǎn).應(yīng)用空間向量方法求解下列問(wèn)題.

(1)求EF的長(zhǎng)
(2)證明:EF∥平面AA1D1D;
(3)證明:EF⊥平面A1CD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱的底面是邊長(zhǎng)為2的正三角形且側(cè)棱垂直于底面,側(cè)棱長(zhǎng)是的中點(diǎn).

(1)求證:平面

(2)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為定義在上的偶函數(shù),,且當(dāng)時(shí),單調(diào)遞增,則不等式的解集為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線(xiàn) =1(a>0,b>0),過(guò)其左焦點(diǎn)F作x軸的垂線(xiàn),交雙曲線(xiàn)于A,B兩點(diǎn),若雙曲線(xiàn)的右頂點(diǎn)在以AB為直徑的圓外,則雙曲線(xiàn)離心率的取值范圍是(
A.(1,
B.(1,2)
C.( ,+∞)
D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)).

(1)討論函數(shù)的單調(diào)性;

(2)記函數(shù)的導(dǎo)函數(shù),當(dāng)時(shí),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】紅鈴蟲(chóng)是棉花的主要害蟲(chóng)之一,也侵害木棉、錦葵等植物.為了防治蟲(chóng)害,從根源上抑制害蟲(chóng)數(shù)量.現(xiàn)研究紅鈴蟲(chóng)的產(chǎn)卵數(shù)和溫度的關(guān)系,收集到7組溫度和產(chǎn)卵數(shù)的觀測(cè)數(shù)據(jù)于表I中.根據(jù)繪制的散點(diǎn)圖決定從回歸模型①與回歸模型②中選擇一個(gè)來(lái)進(jìn)行擬合.

表I

溫度

20

22

25

27

29

31

35

產(chǎn)卵數(shù)個(gè)

7

11

21

24

65

114

325

(1)請(qǐng)借助表II中的數(shù)據(jù),求出回歸模型①的方程:

表II(注:表中

189

567

25.27

162

78106

11.06

3040

41.86

825.09

(2)類(lèi)似的,可以得到回歸模型②的方程為.試求兩種模型下溫度為時(shí)的殘差;

(3)若求得回歸模型①的相關(guān)指數(shù),回歸模型②的相關(guān)指數(shù),請(qǐng)結(jié)合②說(shuō)明哪個(gè)模型的擬合效果更好.

參考數(shù)據(jù):

附:回歸方程相關(guān)指數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,,且.

(1)證明:平面平面

(2)若,,二面角的大小為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在區(qū)間上的函數(shù),

(1)判定函數(shù)的單調(diào)性,并用定義證明;

(2)設(shè)方程有四個(gè)不相等的實(shí)根

①證明:;

②在是否存在實(shí)數(shù),使得函數(shù)在區(qū)間單調(diào),且的取值范圍為,若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案