【題目】下列判斷中正確的是( )
A. “若,則有實數(shù)根”的逆否命題是假命題
B. “”是“直線與直線平行”的充要條件
C. 命題“”是真命題
D. 命題“”在時是假命題
【答案】D
【解析】
分別對四個選項進行判斷:A原命題與逆否命題同真同假,只需要判斷原命題真假或者寫出逆否命題判斷真假;B根據(jù)兩直線平行的條件 可解得 的值,然后判斷是直線平行的什么條件;C先用三角函數(shù)輔助角公式化解,再對全稱命題判斷真假;D利用二次函數(shù)判別式小于0判斷t的范圍,然后判斷其真假.
A:原命題“若,則有實數(shù)根”的逆否命題為“若沒有實數(shù)根,則”.
∵方程無實數(shù)根,
∴,
因此“若沒有實數(shù)根,則”為真.
B: 若,則兩條直線分別是和,顯然平行. 因此“”是“直線與直線平行”的充分條件.
反之,若“直線與直線平行”,則由=≠,得 但當時,兩直線分別是也平行, 滿足題意. 因此“”是“直線與直線平行”的不必要條件.
綜上可知,“”是“直線與直線平行”的充分不必要條件.
C:因為,所以命題“”是假命題. D:當即是假命題.
故選D.
科目:高中數(shù)學 來源: 題型:
【題目】[2019·吉林期末]一個袋中裝有6個大小形狀完全相同的球,球的編號分別為1,2,3,4,5,6.
(1)從袋中隨機抽取兩個球,求取出的球的編號之和為6的概率;
(2)先后有放回地隨機抽取兩個球,兩次取的球的編號分別記為和,求的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列{an}滿足:a3=7,a5+a7=26,{an}的前n項和為Sn.
(1)求an及Sn;
(2)令bn=(n∈N*),求數(shù)列{bn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2016年“雙節(jié)”期間,高速公路車輛較多.某調查公司在一服務區(qū)從七座以下小型汽車中按進服務區(qū)的先后每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進行詢問調查,將他們在某段高速公路的車速分成六段: , , , , , 后得到如圖的頻率分布直方圖.
(I)某調查公司在采樣中,用到的是什么抽樣方法?
(II)求這40輛小型車輛車速的眾數(shù)、中位數(shù)及平均數(shù)的估計值;
(III)若從車速在的車輛中任抽取2輛,求車速在的車輛至少有一輛的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校為進行“陽光運動一小時”活動,計劃在一塊直角三角形的空地上修建一個占地面積為(平方米)的矩形健身場地。如圖,點在上,點在上,且點在斜邊上,已知米,米,,設矩形健身場地每平方米的造價為元,再把矩形以外(陰影部分)鋪上草坪,每平方米的造價為元(為正的常數(shù)).
(1)試用表示,并指出如何設計矩形的長和寬,才能使得矩形的面積最大,且求出的最大值;
(2)求總造價關于面積的函數(shù),說明如何選取,使總造價最低(不要求求出最低造價).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高中年級開設了豐富多彩的校本課程,甲、乙兩班各隨機抽取了5名學生的學分,用莖葉圖表示.,分別表示甲、乙兩班各自5名學生學分的標準差,則_______.(填“”“<”或“=”)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,直平行六面體中,為棱上任意一點,為底面(除外)上一點,已知在底面上的射影為,若再增加一個條件,就能得到,現(xiàn)給出以下條件:
①;②在上;③平面;④直線和在平面的射影為同一條直線.其中一定能成為增加條件的是__________.(把你認為正確的都填上)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在中, , , , 是中點(如圖1).將沿折起到圖2中的位置,得到四棱錐.
(1)將沿折起的過程中, 平面是否成立?并證明你的結論;
(2)若,過的平面交于點,且為的中點,求三棱錐的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com