【題目】[2019·吉林期末]一個袋中裝有6個大小形狀完全相同的球,球的編號分別為1,2,3,4,5,6.
(1)從袋中隨機抽取兩個球,求取出的球的編號之和為6的概率;
(2)先后有放回地隨機抽取兩個球,兩次取的球的編號分別記為和,求的概率.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,且過點.
(Ⅰ)求橢圓的方程.
(Ⅱ)若, 是橢圓上兩個不同的動點,且使的角平分線垂直于軸,試判斷直線的斜率是否為定值?若是,求出該值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓E的中心在原點,焦點在x軸上,橢圓的左頂點坐標為,離心率為.
求橢圓E的方程;
過點作直線l交E于P、Q兩點,試問:在x軸上是否存在一個定點M,使為定值?若存在,求出這個定點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著資本市場的強勢進入,互聯(lián)網共享單車“忽如一夜春風來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調查機構借助網絡進行了問卷調查,并從參與調查的網友中隨機抽取了200人進行抽樣分析,得到下表(單位:人):
(Ⅰ)根據以上數(shù)據,能否在犯錯誤的概率不超過0.15的前提下認為市使用共享單車情況與年齡有關?(Ⅱ)①現(xiàn)從所抽取的30歲以上的網民中,按“經常使用”與“偶爾或不用”這兩種類型進行分層抽樣抽取10人,然后,再從這10人中隨機選出3人贈送優(yōu)惠券,求選出的3人中至少有2人經常使用共享單車的概率.
②將頻率視為概率,從市所有參與調查的網民中隨機抽取10人贈送禮品,記其中經常使用共享單車的人數(shù)為,求的數(shù)學期望和方差.
參考公式: ,其中.
參考數(shù)據:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著資本市場的強勢進入,互聯(lián)網共享單車“忽如一夜春風來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調查機構借助網絡進行了問卷調查,并從參與調查的網友中抽取了200人進行抽樣分析,得到下表(單位:人):
(Ⅰ)根據以上數(shù)據,能否在犯錯誤的概率不超過0.15的前提下認為市使用共享單車情況與年齡有關?(Ⅱ)現(xiàn)從所抽取的30歲以上的網友中利用分層抽樣的方法再抽取5人.
(1)分別求這5人中經常使用、偶爾或不用共享單車的人數(shù);
(2)從這5人中,再隨機選出2人贈送一件禮品,求選出的2人中至少有1人經常使用共享單車的概率.
參考公式: ,其中.
參考數(shù)據:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知曲線的參數(shù)方程為(, 為參數(shù)).以坐標原點為極點, 軸的正半軸為極軸,取相同的長度單位建立極坐標系,直線的極坐標方程為.
(1)當時,求曲線上的點到直線的距離的最大值;
(2)若曲線上的所有點都在直線的下方,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某網站調查2016年大學畢業(yè)生就業(yè)狀況,其中一項數(shù)據顯示“2016年就業(yè)率最高學科”為管理學,高達(數(shù)據來源于網絡,僅供參考).為了解高三學生對“管理學”的興趣程度,某校學生社團在高校高三文科班進行了問卷調查,問卷共100道選擇題,每題1分,總分100分,社團隨機抽取了100名學生的問卷成績(單位:分)進行統(tǒng)計,得到頻率分布表如下:
組號 | 分組 | 男生 | 女生 | 頻數(shù) | 頻率 |
第一組 | 3 | 2 | 5 | 0.05 | |
第二組 | 17 | ||||
第三組 | 20 | 10 | 30 | 0.3 | |
第四組 | 6 | 18 | 24 | 0.24 | |
第五組 | 4 | 12 | 16 | 0.16 | |
合計 | 50 | 50 | 100 | 1 |
(1)求頻率分布表中, , 的值;
(2)若將得分不低于60分的稱為“管理學意向”學生,將低于60分的稱為“非管理學意向”學生,根據條件完成下面列聯(lián)表,并據此判斷是否有的把握認為是否為“管理學意向”與性別有關?
非管理學意向 | 管理學意向 | 合計 | |
男生 | |||
女生 | |||
合計 |
(3)心理咨詢師認為得分低于20分的學生可能“選擇困難”,要從“選擇困難”的5名學生中隨機抽取2名學生進行心理輔導,求恰好有1名男生,1名女生被選中的概率.
參考公式: ,其中.
參考臨界值:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列判斷中正確的是( )
A. “若,則有實數(shù)根”的逆否命題是假命題
B. “”是“直線與直線平行”的充要條件
C. 命題“”是真命題
D. 命題“”在時是假命題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com