9.若隨機(jī)變量X~N(μ,σ2)(σ>0),則有如下結(jié)論:P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544,P(μ-3σ<X≤μ+3σ)=0.9974,高二(1)班有40名同學(xué),一次數(shù)學(xué)考試的成績(jī)X~N(120,100),理論上說在130分~140分之間的人數(shù)約為( 。
A.8B.5C.10D.12

分析 利用對(duì)稱性求出P(130<X<140),從而可得出人數(shù).

解答 解:∵X~N(120,100),
∴P(110<X≤130)=0.6826,P(100<X≤140)=0.9544,
∴P(130<X<140)=$\frac{1}{2}$(0.9544-0.6826)=0.1359,
∴130分~140分之間的人數(shù)約為40×0.1359≈5.
故選B.

點(diǎn)評(píng) 本題考查了正態(tài)分布的特點(diǎn),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知a是實(shí)數(shù),$\frac{a-i}{1+i}$是純虛數(shù),則a=(  )
A.-1+2iB.1C.3D.3-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.“因?yàn)閑=2.71828…是無限不循環(huán)小數(shù),所以e是無理數(shù)”,以上推理的大前提是( 。
A.實(shí)數(shù)分為有理數(shù)和無理數(shù)B.e不是有理數(shù)
C.無限不循環(huán)小數(shù)都是無理數(shù)D.無理數(shù)都是無限不循環(huán)小數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.(1)已知角α的終邊上有一點(diǎn)P(4t,-3t)(t≠0),求2sinα+cosα的值;
(2)已知角β的終邊在直線y=$\sqrt{3}$x上,用三角比的定義求sinβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知集合A={-1,1,3},B={x|-3<x≤2,x∈N},則集合A∪B中元素的個(gè)數(shù)為(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖所示,MCN是某海灣旅游區(qū)的一角,為營(yíng)造更加優(yōu)美的旅游環(huán)境,旅游區(qū)管委會(huì)決定建立面積為4$\sqrt{3}$平方千米的三角形主題游戲樂園ABC,并在區(qū)域CDE建立水上餐廳.已知∠ACB=120°,∠DCE=30°.
(Ⅰ)設(shè)AC=x,AB=y,用x表示y,并求y的最小值;
(Ⅱ)設(shè)∠ACD=θ(θ為銳角),當(dāng)AB最小時(shí),用θ表示區(qū)域CDE的面積S,并求S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}2x+y+2≥0\\ x+y+m≤0\\ y≥0\end{array}\right.$,則z=y-2x最小值等于-2,z的最大值10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知直線l:y=k(x-2)與拋物線C:y2=8x交于A,B兩點(diǎn),點(diǎn)M(-2,4)滿足MA⊥MB,則|AB|=( 。
A.6B.8C.10D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若以直角坐標(biāo)系xOy的O為極點(diǎn),Ox為極軸,選擇相同的長(zhǎng)度單位建立極坐標(biāo)系,得曲線C的極坐標(biāo)方程是ρ=$\frac{cosθ}{{{{sin}^2}θ}}$.
(1)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,并指出曲線是什么曲線;
(2)若直線l的參數(shù)方程為$\left\{\begin{array}{l}x=\frac{3}{2}+t\\ y=\sqrt{3}t\end{array}$(t為參數(shù)),當(dāng)直線l與曲線C相交于A,B兩點(diǎn),求|AB|.

查看答案和解析>>

同步練習(xí)冊(cè)答案