(本題滿分12分)
已知四棱錐P—ABCD中,平面ABCD,底面ABCD為菱形,,AB=PA=2,E.F分別為BC.PD的中點。

(Ⅰ)求證:PB//平面AFC;
(Ⅱ)求平面PAE與平面PCD所成銳二面角的余弦值。
解析:(1)連結(jié)BD交AC于O,
為菱形,則BO=OD…………1分
連結(jié)FO,…………3分
平面AFC,平面AFC,
平面AFC…………4分
(2)為BC中點,

…………6分
建立如圖所示的空間直角坐標系,,
,D(90,2,0)…………8分
平面PAE的一個法向量為……9分
設(shè)平面PDC的一個法向量為



…………11分

平面PAE與平面PCD所成銳二面角的余弦值為……12分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖:在直角三角形ABC中,已知, D為AC的中點,E為BD的中點,AE的延長線交BC于F,將△ABD沿BD折起,二面角的大小記為.
⑴求證:平面平面BCD;                     
⑵當時,求的值;            
⑶在⑵的條件下,求點C到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,在四棱錐P-ABCD中,PD上⊥平面ABCD,AD⊥CD,且BD平分∠ADC,
    E為PC的中點,AD=CD=l,BC=PC,
(Ⅰ)證明PA∥平面BDE;
(Ⅱ)證明AC⊥平面PBD:
(Ⅲ)求四棱錐P-ABCD的體積,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分8分)
如圖,一個圓錐形的空杯子上面放著一個半球形的冰淇淋,如果冰淇淋融化了,會溢出杯子嗎?請用你的計算數(shù)據(jù)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
圖為一簡單組合體,其底面ABCD為正方形,平面,,
,
(1)求證://平面;
(2)若N為線段的中點,求證:平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的正方形,PA⊥底面ABCD,PA=4,M為PA的中點,N為AB的中點.

(1)求三棱錐P-CDM的體積;
(2)求二面角A-DN-M的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)如圖,在四棱錐PABCD中,PA底面ABCD,DAB為直角,ABCD,AD=CD=2AB,E、F分別為PC、CD的中點.
(Ⅰ)試證:AB平面BEF
(Ⅱ)設(shè)PAk ·AB,若平面與平面的夾角大于,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)在棱長為的正方體中,是線段的中點,.
(Ⅰ) 求證:^;(Ⅱ) 求證:∥平面;(Ⅲ) 求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐P—ABCD的底面ABCD是邊長為2的菱形,,點M
是棱PC的中點,平面ABCD,AC、BD交于點O。

(1)求證:,求證:AM平面PBD;
(2)若二面角M—AB—D的余弦值等于,求PA的長

查看答案和解析>>

同步練習冊答案