【題目】已知曲線的參數(shù)方程為(為參數(shù)),以直角坐標系原點為極點,以軸正半軸為極軸并取相同的單位長度建立極坐標系.
(1)求曲線的極坐標方程,并說明其表示什么軌跡;
(2)若直線的極坐標方程為,求曲線上的點到直線的最大距離.
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l的參數(shù)方程為為參數(shù)), 橢圓C的參數(shù)方程為為參數(shù))。在平面直角坐標系中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,點A的極坐標為(2,
(1)求橢圓C的直角坐標方程和點A在直角坐標系下的坐標
(2)直線l與橢圓C交于P,Q兩點,求△APQ的面積
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某歌舞團有名演員,他們編排了一些節(jié)目,每個節(jié)目都由四名演員同臺表演.在一次演出中,他們發(fā)現(xiàn):能適當安排若干個節(jié)目,使團中每兩名演員都恰有一次在這次演出中同臺表演。求的最小值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點,,點為曲線上任意一點且滿足.
(1)求曲線的方程;
(2)設曲線與軸交于、兩點,點是曲線上異于、的任意一點,直線、分別交直線于點、.試問在軸上是否存在一個定點,使得?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】第七屆世界軍人運動會于2019年10月18日至27日在中國武漢舉行,中國隊以133金64銀42銅位居金牌榜和獎牌榜的首位.運動會期間有甲、乙等五名志愿者被分配到射擊、田徑、籃球、游泳四個運動場地提供服務,要求每個人都要被派出去提供服務,且每個場地都要有志愿者服務,則甲和乙恰好在同一組的概率是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市環(huán)保部門對該市市民進行了一次動物保護知識的網(wǎng)絡問卷調(diào)查,每位市民僅有一次參加機會,通過隨機抽樣,得到參'與問卷調(diào)查的100人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計結果如表所示:
組別 | ||||||
男 | 2 | 3 | 5 | 15 | 18 | 12 |
女 | 0 | 5 | 10 | 15 | 5 | 10 |
若規(guī)定問卷得分不低于70分的市民稱為“動物保護關注者”,則山圖中表格可得列聯(lián)表如下:
非“動物保護關注者” | 是“動物保護關注者” | 合計 | |
男 | 10 | 45 | 55 |
女 | 15 | 30 | 45 |
合計 | 25 | 75 | 100 |
(1)請判斷能否在犯錯誤的概率不超過0.05的前提下認為“動物保護關注者”與性別有關?
(2)若問卷得分不低于80分的人稱為“動物保護達人”.現(xiàn)在從本次調(diào)查的“動物保護達人”中利用分層抽樣的方法隨機抽取6名市民參與環(huán)保知識問答,再從這6名市民中抽取2人參與座談會,求抽取的2名市民中,既有男“動物保護達人”又有女“動物保護達人”的概率.
附表及公式:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖在四棱錐中,是邊長為2的等邊三角形,,Q為四邊形的外接圓的圓心,平面,M在棱上,且.
(1)證明:平面.
(2)若與平面所成角為60°,求與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com