已知sinx+2cosy=2,求cosx+2siny的范圍.
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用
專題:三角函數(shù)的求值,三角函數(shù)的圖像與性質(zhì)
分析:直接對關(guān)系式進(jìn)行恒等變換,進(jìn)一步利用換元法設(shè)cosx+2siny=t,然后結(jié)合函數(shù)的值域進(jìn)一步求出結(jié)果.
解答: 解:(sinx+2cosy)2+(cosx+2siny)2=1+4sinxcosy+4cosxsiny+4
=5+4(sin(x+y)
因?yàn)椋簊inx+2cosy=2,
設(shè)cosx+2siny=t
則:t2=1+4sin(x+y)
所以:0≤t2≤5
解得:-
5
≤t≤
5
點(diǎn)評:本題考查的知識要點(diǎn):三角函數(shù)關(guān)系式的恒等變換,換元法的應(yīng)用.屬于基礎(chǔ)題型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,且S3=2,S6=6,則a13+a14+a15的值是( 。
A、18B、28C、32D、144

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)
1
1-i
的共軛復(fù)數(shù)為( 。
A、
1
2
+
1
2
i
B、-
1
2
-
1
2
i
C、
1
2
-
1
2
i
D、-
1
2
+
1
2
i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax-b,g(x)=ex(a,b∈R),h(x)為g(x)的反函數(shù).
(Ⅰ)若函數(shù)y=f(x)-g(x)在x=1處的切線方程為y=(1-e)x-2,求a,b的值;
(Ⅱ)當(dāng)b=0時(shí),若不等式f(x)>h(x)恒成立,求a的取值范圍;
(Ⅲ)當(dāng)a=b時(shí),若對任意x0∈(-∞,0],方程f(x)-h(x)=g(x0)在(0,e]上總有兩個不等的實(shí)根,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方體ABCD-A1B1C1D1中,線段BB1與線段AD1所成角的余弦值為( 。
A、
2
3
B、
3
2
C、
1
2
D、
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:分子為1且分母為正整數(shù)的分?jǐn)?shù)稱為單位分?jǐn)?shù).我們可以把1分拆為若干個不同的單位分?jǐn)?shù)之和. 如:1=
1
2
+
1
3
+
1
6
,1=
1
2
+
1
4
+
1
6
+
1
12
,1=
1
2
+
1
5
+
1
6
+
1
12
+
1
20
,…依此類推可得:1=
1
2
+
1
6
+
1
12
+
1
m
+
1
n
+
1
30
+
1
42
+
1
56
+
1
72
+
1
90
+
1
110
+
1
132
+
1
156
,其中m≤n,m,n∈N*.設(shè)1≤x≤m,1≤y≤n,則
x+y+2
x+1
的最小值為(  )
A、
23
2
B、
5
2
C、
8
7
D、
34
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
e1
,
e2
是兩個不共線的向量
(1)已知
AB
=2
e1
+k
e2
,
CB
=
e1
+3
e2
CD
=2
e1
-
e2
,若A,B,D三點(diǎn)共線,求k的值
(2)如圖,在平行四邊形OPQR中,S是對角線的交點(diǎn),若
OP
=2
e1
,
OR
=3
e2
,以
e1
,
e2
為基底表示
PS
QS

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x∈R,定義:A(x)表示不大于x的最大整數(shù),如A(
3
)=1,A(-0.4)=-1,A(-1.1)=-2,
(1)試寫出A(x)的解析式;
(2)A(2x+1)=3,則實(shí)數(shù)x的取值范圍是
 
;
(3)求滿足條件A2(x)+A2(y)≤1的點(diǎn)(x,y)所構(gòu)成的平面區(qū)域的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.曲線C的極坐標(biāo)方程為ρcos2θ=sinθ.直線l過點(diǎn)(-1,2)且傾斜角為
4

(Ⅰ)在直角坐標(biāo)系下,求曲線C的直角坐標(biāo)方程和直線l的參數(shù)方程;
(Ⅱ)已知直線l與曲線C交于A,B兩點(diǎn),求線段AB的長.

查看答案和解析>>

同步練習(xí)冊答案