【題目】已知函數(shù).

(1)求曲線在點(diǎn)處的切線方程;

(2)若函數(shù)上單調(diào)遞增,求實(shí)數(shù)的取值范圍.

【答案】(1);(2).

【解析】試題分析:1求得函數(shù)的導(dǎo)數(shù),可得切線的斜率和切點(diǎn),由點(diǎn)斜式方程可得切線方程;(2函數(shù)上單調(diào)遞增,可得上恒成立,上恒成立,可得上恒成立可令,解不等式即可得到所求范圍.

試題解析:(1),

,所以所求切線的方程為:

;

(2)因?yàn)楹瘮?shù)上單調(diào)遞增,所以上恒成立,

上恒成立,

,即 對任意的恒成立,

,則需,

所以,即.

【方法點(diǎn)晴】本題主要考查利用導(dǎo)數(shù)求曲線切線以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,屬于難題.求曲線切線方程的一般步驟是:(1)求出處的導(dǎo)數(shù),即在點(diǎn) 出的切線斜率(當(dāng)曲線處的切線與軸平行時,在 處導(dǎo)數(shù)不存在,切線方程為);(2)由點(diǎn)斜式求得切線方程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù)).

(1)若, ,求函數(shù)的單調(diào)區(qū)間;

(2)若,且方程內(nèi)有解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若在定義域上為單調(diào)遞減函數(shù),求實(shí)數(shù)的取值范圍;

(2)是否存在實(shí)數(shù),使得恒成立且有唯一零點(diǎn),若存在,求出滿足 的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)過原點(diǎn)作函數(shù)圖象的切線,求切點(diǎn)的橫坐標(biāo);

(2)對,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬崘顕ч埞鎴︽偐閸欏鎮欑紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�