【題目】已知函數(shù)f(x)=|2x﹣1|﹣2|x﹣1|.
(1)作出函數(shù)f(x)的圖象;
(2)若不等式 ≤f(x)有解,求實數(shù)a的取值范圍.

【答案】
(1)解:令2x﹣1=0,得x= ,

令x﹣1=0,得x=1;

當x< 時,函數(shù)f(x)=|2x﹣1|﹣2|x﹣1|=﹣(2x﹣1)+2(x﹣1)=﹣1;

≤x≤1時,函數(shù)f(x)=|2x﹣1|﹣2|x﹣1|=(2x﹣1)+2(x﹣1)=4x﹣3;

當x>1時,函數(shù)f(x)=|2x﹣1|﹣2|x﹣1|=(2x﹣1)﹣2(x﹣1)=1;

∴f(x)=

作出函數(shù)f(x)的圖象,如圖所示;


(2)解:由函數(shù)f(x)的圖象知,f(x)的最大值是1,

所以不等式 ≤f(x)有解,等價于 ≤1有解,

不等式 ≤1可化為 ﹣1≤0

(2a﹣1)(a﹣1)≥0(a≠1),解得a≤ 或a>1,

所以實數(shù)a的取值范圍是(﹣∞, ]∪(1,+∞)


【解析】(1)去掉絕對值,化簡函數(shù)f(x),作出函數(shù)f(x)的圖象即可;(2)由函數(shù)f(x)的圖象知函數(shù)的最大值是1,問題等價于 ≤1有解, 求出解集即可.
【考點精析】解答此題的關(guān)鍵在于理解絕對值不等式的解法的相關(guān)知識,掌握含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對值的符號.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)f(x)= 若f(x)恰有2個零點,則實數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】黨的十九大報告指出,建設(shè)生態(tài)文明是中華民族永續(xù)發(fā)展的千年大計.而清潔能源的廣泛使用將為生態(tài)文明建設(shè)提供更有力的支撐.沼氣作為取之不盡、用之不竭的生物清潔能源,在保護綠水青山方面具有獨特功效.通過辦沼氣帶來的農(nóng)村“廁所革命”,對改善農(nóng)村人居環(huán)境等方面,起到立竿見影的效果.為了積極響應國家推行的“廁所革命”,某農(nóng)戶準備建造一個深為2米,容積為32立方米的長方體沼氣池,如果池底每平方米的造價為150元,池壁每平方米的造價為120元,沼氣池蓋子的造價為3000元,問怎樣設(shè)計沼氣池能使總造價最低?最低總造價是多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是定義在R上的函數(shù),對R都有,且當0時,<0,=1.

(1)求的值;

(2)求證:為奇函數(shù);

(3)求在[-2,4]上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: (a>b>0)的短軸長為2,過上頂點E和右焦點F的直線與圓M:x2+y2﹣4x﹣2y+4=0相切.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若直線l過點(1,0),且與橢圓C交于點A,B,則在x軸上是否存在一點T(t,0)(t≠0),使得不論直線l的斜率如何變化,總有∠OTA=∠OTB (其中O為坐標原點),若存在,求出 t的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】計算機在數(shù)據(jù)處理時使用的是二進制,例如十進制的1、2、3、4在二進制分別表示為1、10、11、100.下面是某同學設(shè)計的將二進制數(shù)11111化為十進制數(shù)的一個流程圖,則判斷框內(nèi)應填入的條件是(
A.i>4
B.i≤4
C.i>5
D.i≤5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}中,a1=1,an+1= (n∈N*).
(1)求證:{ + }為等比數(shù)列,并求{an}的通項公式an
(2)數(shù)列{bn}滿足bn=(3n﹣1) an , 求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,各個側(cè)面均是邊長為的正方形,為線段的中點

(Ⅰ)求證:⊥平面;

(Ⅱ)求證:直線∥平面;

(Ⅲ)設(shè)為線段上任意一點,在內(nèi)的平面區(qū)域(包括邊界)是否存在點,使,并說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)試確定函數(shù)在(0,+∞)上的單調(diào)性;

(2)若,函數(shù)在(0,2)上有極值,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案