分析 (1)求出函數(shù)的導(dǎo)數(shù),通過(guò)討論a的范圍求出函數(shù)的單調(diào)區(qū)間即可;
(2)問(wèn)題即為a>$\frac{2(x+1)}{{e}^{x}}$對(duì)?x∈R恒成立,令g(x)=$\frac{2(x+1)}{{e}^{x}}$,根據(jù)函數(shù)的單調(diào)性求出a的范圍即可.
解答 解:(1)f′(x)=aex-1,
①a≤0時(shí),aex-1<0恒成立,
故f(x)在R遞增;
②a>0時(shí),令f′(x)>0,解得:x>ln$\frac{1}{a}$,
令f′(x)<0,解得:x<ln$\frac{1}{a}$,
∴f(x)在(-∞,ln$\frac{1}{a}$)遞減,在(ln$\frac{1}{a}$,+∞)遞增;
(2)由題意得:aex-x-1>x+1對(duì)?x∈R恒成立,
即a>$\frac{2(x+1)}{{e}^{x}}$對(duì)?x∈R恒成立,
令g(x)=$\frac{2(x+1)}{{e}^{x}}$,則g′(x)=$\frac{-2x}{{e}^{x}}$,
令g′(x)>0,解得:x<0,令g′(x)<0,解得:x>0,
∴g(x)在(-∞,0)遞增,在(0,+∞)遞減,
∴g(x)max=g(0)=2,
故a>2.
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)恒成立問(wèn)題,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ($\frac{1}{8}$,+∞) | B. | ($\frac{1}{3}$,$\frac{{2\sqrt{2}}}{3}$) | C. | ($\frac{{\sqrt{2}}}{4}$,+∞) | D. | (2$\sqrt{2}$,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com