【題目】黨的十八大以來,我國精準扶貧已經(jīng)實施了六年,我國貧困人口從2012年的9899萬人,減少到2018年的1660萬人,2019年將努力實現(xiàn)減少貧困人口1000萬人以上的目標,力爭2020年在現(xiàn)行標準下,農(nóng)村貧困人口全部脫貧,貧困縣全部脫貧摘帽.某市為深入分析該市當前扶貧領(lǐng)域存在的突出問題,市扶貧辦近三年來,每半年對貧困戶(用表示,單位:萬戶)進行取樣,統(tǒng)計結(jié)果如圖所示,從2016年6月底到2019年6月底的共進行了七次統(tǒng)計,統(tǒng)計時間用序號表示,例如:2016年12月底(時間序號為2)貧困戶為5.2萬戶.
(1)求關(guān)于的線性回歸方程,并預測到2020年12月底,該市能否實現(xiàn)貧困戶全部脫貧;
(2)為盡快打贏脫貧攻堅戰(zhàn),該市扶貧辦在2019年6月底時,對全市貧困戶隨機抽取了100戶貧困戶,對每個家庭最主要經(jīng)濟收入來源進行抽樣調(diào)查,統(tǒng)計結(jié)果如圖.并決定據(jù)此選派一批農(nóng)業(yè)技術(shù)人員對全市所有貧困戶中,家庭最主要經(jīng)濟收入來源為養(yǎng)殖收入和種植收入的貧困戶進行對口幫扶,每一名農(nóng)業(yè)技術(shù)人員對口幫扶貧困戶90戶,則該市應分別安排多少農(nóng)業(yè)技術(shù)人員對家庭最主要經(jīng)濟收入來源為養(yǎng)殖收入和種植收入的貧困戶進行對口幫扶?
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
,
【答案】(1),不能;(2)58人和116人.
【解析】
(1)由題意求得、后,代入公式即可得、,即可得線性回歸方程;代入求得即可得解;
(2)由統(tǒng)計圖計算可得家庭最主要經(jīng)濟收入來源為養(yǎng)殖收入和種植收入的貧困戶戶數(shù),即可得解.
(1)∵,
,
,
,
關(guān)于的線性回歸方程.
2020年12月底時,,代入知,不能實現(xiàn)貧困戶全部脫貧.
(2)2019年6月底時,貧困戶共2.9萬戶,由圖知,家庭最主要經(jīng)濟收入來源為養(yǎng)殖收入和種植收入分別占和,
,,
對家庭最主要經(jīng)濟收入來源為養(yǎng)殖收入和種植收入的貧困戶分別安排58人和116人.
科目:高中數(shù)學 來源: 題型:
【題目】以下四個關(guān)于圓錐曲線的命題,
①雙曲線與橢圓有相同的焦點;
②在平面內(nèi),設(shè)為兩個定點,為動點,且,其中常數(shù)為正實數(shù),則動點的軌跡為橢圓;
③方程的兩根可以分別作為橢圓和雙曲線的離心率;
④過雙曲線的右焦點作直線交雙曲線于兩點,若,則這樣的直線有且僅有3條.
其中真命題的個數(shù)為( )
A. 4B. 3C. 2D. 1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從裝有個紅球和個黒球的口袋內(nèi)任取個球,則互為對立事件是( )
A. 至少有一個黒球與都是黒球B. 至少有一個黒球與都是紅球
C. 至少有一個黒球與至少有個紅球D. 恰有個黒球與恰有個黒球
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校高三年級有學生1000名,經(jīng)調(diào)查,其中750名同學經(jīng)常參加體育鍛煉(稱為類同學),另外250名同學不經(jīng)常參加體育鍛煉(稱為類同學),現(xiàn)用分層抽樣方法(按類、類分兩層)從該年級的學生中共抽取100名同學,如果以身高達作為達標的標準,對抽取的100名學生,得到以下列聯(lián)表:
身高達標 | 身高不達標 | 總計 | |
經(jīng)常參加體育鍛煉 | 40 | ||
不經(jīng)常參加體育鍛煉 | 15 | ||
總計 | 100 |
(Ⅰ)完成上表;
(Ⅱ)能否在犯錯誤的概率不超過0.05的前提下認為經(jīng)常參加體育鍛煉與身高達標有關(guān)系(的觀測值精確到0.001)?
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知是正三角形,EA,CD都垂直于平面ABC,且,,F是BE的中點,
求證:(1)平面ABC;
(2)平面EDB.
(3)求幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】空氣質(zhì)量指數(shù)(Air Quality Index,簡稱AQI)是定量描述空氣質(zhì)量狀況的指數(shù),空氣質(zhì)量按照AQI大小分為六級:0~50為優(yōu);51~100為良;101~150為輕度污染;151~200為中度污染;201~300為重度污染;>300為嚴重污染.一環(huán)保人士記錄了某地2020年某月10天的AQI的莖葉圖如圖所示.
(1)利用該樣本估計該地本月空氣質(zhì)量優(yōu)良(AQI≤100)的天數(shù);(按這個月總共有30天計算)
(2)若從樣本中的空氣質(zhì)量不佳(AQI>100)的這些天中,隨機地抽取兩天深入分析各種污染指標,求該兩天的空氣質(zhì)量等級恰好不同的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某養(yǎng)殖的水產(chǎn)品在臨近收獲時,工人隨機從水中捕撈只,其質(zhì)量分別在
(單位:克),經(jīng)統(tǒng)計分布直方圖如圖所示.
(1)求這組數(shù)據(jù)的眾數(shù);
(2)現(xiàn)按分層抽樣從質(zhì)量為的水產(chǎn)品種隨機抽取只,在從這只中隨機抽取只,求這只水產(chǎn)品恰有只在內(nèi)的概率;
(3)某經(jīng)銷商來收購水產(chǎn)品時,該養(yǎng)殖場現(xiàn)還有水產(chǎn)品共計約只要出售,經(jīng)銷商提出如下兩種方案:
方案A:所有水產(chǎn)品以元/只收購;
方案B:對于質(zhì)量低于克的水產(chǎn)品以元/只收購,不低于克的以元/只收購,
通過計算確定養(yǎng)殖場選擇哪種方案獲利更多?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,右焦點為圓的圓心,且圓截軸所得弦長為4.
(1)求橢圓與圓的方程;
(2)若直線與曲線,都只有一個公共點,記直線與圓的公共點為,求點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐中,底面是邊長為的正方形ABCD,AC與BD的交點為O,平面ABCD且,E是邊BC的中點,動點P在四棱錐表面上運動,并且總保持,則動點P的軌跡的周長為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com