7.在△ABC中,已知A=30°,B=120°,b=5,解三角形.

分析 由三角形的內(nèi)角和可得C,可得等腰三角形,由正弦定理可得a和c.

解答 解:∵A=30°,B=120°,∴C=180°-(A+B)=30°.
∴A=C,∴a=c.由正弦定理可得a=$\frac{bsinA}{sinB}$=$\frac{5sin30°}{sin120°}$=$\frac{5\sqrt{3}}{3}$,
綜上可知,C=30°,a=c=$\frac{5\sqrt{3}}{3}$

點評 本題考查解三角形,涉及正余弦定理的應(yīng)用,屬基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

12.函數(shù)y=ln(ax2+x-1)的值域為R,當且僅當( 。
A.a≥0B.a>0C.a$≥-\frac{1}{4}$D.a$<-\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.給出如下說法:
①命題“若x2-3x+2=0,則x=1”的逆否命題是“若x≠1,則x2-3x+2≠0”
②若命題p:?x∈R,x2+x+1=0,則¬p:?x∈R,x2+x+1≠0
③若p∧q為假命題,則p,q均為假命題
④“x>2”是“x2-3x+2>0”的充分不必要條件
其中正確命題的序號有①②④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.(1)若6x=24y=12,求$\frac{1}{x}$+$\frac{1}{y}$的值;
(2)解方程:1og2(2x+8)=x+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知a>0,函數(shù)f(x)=eaxsinx(x∈[0,+∞)).記xn為f(x)的從小到大的第n(n∈N*)個極值點,則數(shù)列{f(xn)}是( 。
A.等差數(shù)列,公差為eaxB.等差數(shù)列,公差為-eax
C.等比數(shù)列,公比為eaxD.等比數(shù)列,公比為-eax

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.某高三年級從甲(文)乙(理)兩個年級組各選出7名學生參加高校自主招生數(shù)學選拔考試,他們?nèi)〉玫某煽儯M分:100分)的莖葉圖如圖所示,其中甲組學生的平均分是85分,乙組學生成績的中位數(shù)是83分.
(1)求x和y的值;
(2)從成績在90分以上的學生中隨機取兩名學生,求甲組至少有一名學生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.設(shè)數(shù)列{an}滿足a1=1,an+1=3an
(1)求{an}的通項公式及前n項和Sn;
(2)已知{bn}是等差數(shù)列,Tn為前n項和,且b1=a2,b2=a1+a2+a3,求T38

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,在正四棱柱中ABCD-A1B1C1D1,AB=1,D1B和平面ABCD所成的角的大小為$arctan\frac{{3\sqrt{2}}}{4}$,求該四棱柱的表面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.如圖,在四棱錐P-ABCD中,PA⊥ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,點E為棱PC的中點.
(1)證明BE⊥DC;
(2)求二面角E-AB-P的值;
(3)求直線BE與平面PBD所成角的正弦值.

查看答案和解析>>

同步練習冊答案