18.一家新技術公司計劃研制一個名片管理系統(tǒng),希望系統(tǒng)能夠具備以下功能:
(1)用戶管理:能修改密碼,顯示用戶信息,修改用戶信息.
(2)用戶登錄.
(3)名片管理:能夠?qū)γM行刪除、添加、修改、查詢.
(4)出錯信息處理.
請根據(jù)這些要求畫出該系統(tǒng)的結構圖.

分析 讀懂題意,確定出該系統(tǒng)的結構圖即可.

解答 解:名片管理系$\left\{\begin{array}{l}{用戶管理\left\{\begin{array}{l}{修改密碼}\\{顯示用戶信息}\\{修改用戶信息}\end{array}\right.}\\{用戶登錄}\\{名片管理\left\{\begin{array}{l}{刪除}\\{添加}\\{修改}\\{查詢}\end{array}\right.}\\{出錯信息處理}\end{array}\right.$.

點評 此題考查了繪制結構圖,讀懂題意是解本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

8.函數(shù)f(x)=sin(πx-$\frac{π}{3}}$)-1是( 。
A.周期為1的奇函數(shù)B.周期為2的偶函數(shù)
C.周期為1的非奇非偶函數(shù)D.周期為2的非奇非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知集合A={x|3≤x<7},B={x|2<x<10},C={x|x<a}.
(1)求(∁RA)∩B;  
(2)若A⊆C,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1)的離心率為$\frac{\sqrt{3}}{2}$,P(m,n)為圓x2+y2=16上任意一點,過P作橢圓的切線PA,PB,設切點分別為A(x1,y1),B(x2,y2).
(1)證明:切線PA的方程為$\frac{{x}_{1}x}{4}$+y1y=1;
(2)設O為坐標原點,求△OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知數(shù)列{an}與{bn}滿足an+1-an=2(bn+1-bn),n∈N*
(1)若bn=3n+5,且a1=1,求數(shù)列{an}的通項公式;
(2)設a1=λ<0,bnn(n∈N*),求λ的取值范圍,使得{an}有最大值M與最小值m,且$\frac{M}{m}$∈(-2,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知函數(shù)f(x)=2x+1,若f1(x)=f(x),fn+1(x)=f[fn(x)],n∈N*.則f5(x)的表達式為32x+31.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知等比數(shù)列{an}的S3=7,若4a1,2a2,a3成等差數(shù)列,則a1=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=x3+ax2+bx+1,僅當x=-1,x=1時取得極值;
(1)求a、b的值;
(2)討論f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知A1,A2,A3為平面上三個不共線的定點,平面上點M滿足$\overrightarrow{{A}_{1}M}$=λ($\overrightarrow{{A}_{1}{A}_{2}}$+$\overrightarrow{{A}_{1}{A}_{3}}$)(λ是實數(shù)),且$\overrightarrow{M{A}_{1}}$+$\overrightarrow{M{A}_{2}}$+$\overrightarrow{M{A}_{3}}$是單位向量,則這樣的點M有(  )
A.0個B.1個C.2個D.無數(shù)個

查看答案和解析>>

同步練習冊答案