A. | 4 | B. | 6 | C. | 8 | D. | 10 |
分析 由球的體積為$\frac{500π}{3}$,可以得球的半徑;由小圓面積為16π,可以得小圓的半徑;由圖知三棱錐高的最大值應(yīng)過球心,故可以作出解答.
解答 解:如圖,設(shè)球的半徑為R,由球的體積公式得:$\frac{4}{3}$πR3=$\frac{500π}{3}$,∴R=5.
又設(shè)小圓半徑為r,則πr2=16π,∴r=4.
顯然,當(dāng)三棱錐的高過球心O時,取得最大值;
由OO1=$\sqrt{{5}^{2}-{4}^{2}}$=3,所以高PO1=PO+OO1=5+3=8.
故選:C.
點評 本題考查了由球的體積求半徑,由圓的面積求半徑,以及勾股定理的應(yīng)用,是基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
A. | $\widehat{y}$=0.7x+0.35 | B. | $\widehat{y}$=0.7x+4.5 | C. | $\widehat{y}$=0.7x-0.35 | D. | $\widehat{y}$=0.7x-4.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 6 | C. | 2 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1,2,3,4} | B. | {2,4,6,8} | C. | {1,2,4,8} | D. | {2,4,8} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com