6.方程|x2-2x|=a2+1(a∈R+)的解的個數(shù)是2.

分析 根據(jù)a為正數(shù),得到a2+1>1,然后作出y=|x2-2x|的圖象如圖所示,根據(jù)圖象得到y(tǒng)=a2+1的圖象與y=|x2-2x|的圖象總有兩個交點,得到方程有兩解.

解答
解:∵a∈R+
∴a2+1>1.而y=|x2-2x|的圖象如圖,
∴y=|x2-2x|的圖象與y=a2+1的圖象總有兩個交點.
∴方程有兩解.
故答案為:2.

點評 考查學(xué)生靈活運用函數(shù)的圖象與性質(zhì)解決實際問題,會根據(jù)圖象的交點的個數(shù)判斷方程解的個數(shù).做題時注意利用數(shù)形結(jié)合的思想方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0)的一條漸近線為$\sqrt{3}$x+y=0,則a=(  )
A.$\sqrt{3}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)x,y滿足不等式組$\left\{\begin{array}{l}{x+y-1≤0}\\{x≥0}\\{y≥0}\end{array}\right.$,則z=2x+y的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知集合A={x|-1≤x≤3},集合B={x|a-3≤x≤3a+1}
(1)當$a=\frac{1}{2}$時,求A∩B
(2)若A⊆B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)y=loga(x-3)-1的圖象恒過定點P,則點P的坐標是(4,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)a、b分別是甲、乙各拋擲一枚骰子得到的點數(shù),已知乙所得的點數(shù)為2,則方程x2+ax+b=0有兩個不相等的實數(shù)根的概率為( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{5}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.定義一種運算:a?$b=\left\{\begin{array}{l}{a}&{a≥b}\\&{a<b}\end{array}\right.$已知函數(shù)f(x)=2x?(3-x),那么函數(shù)y=f(x)的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}{({x-a})^2},x≤0\\ x+\frac{1}{x}-a,x>0\end{array}\right.$,若函數(shù)值f(0)是f(x)的最小值,則實數(shù)a的取值范圍是[0,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知數(shù)列{an}是首項為1,公差為2m的等差數(shù)列,前n項和為Sn,設(shè)bn=$\frac{{S}_{n}}{n•{2}^{n}}$(n∈N*),若數(shù)列{bn}是遞減數(shù)列,則實數(shù)m的取值范圍是[0,1).

查看答案和解析>>

同步練習(xí)冊答案