分析 由已知條件推導(dǎo)出a≤$\frac{{x}^{2}-2x}{x-lnx}$,(x∈[1,e]),令f(x)=$\frac{{x}^{2}-2x}{x-lnx}$,(x∈[1,e]),由此利用導(dǎo)數(shù)性質(zhì)能求出a的取值范圍.
解答 解:由題意得到:a(x-lnx)≤x2-2x.
∵x∈[1,e],
∴l(xiāng)nx≤1≤x且等號(hào)不能同時(shí)取,所以lnx<x,即x-lnx<0,
因而a≤$\frac{{x}^{2}-2x}{x-lnx}$(x∈[1,e])
令f(x)=$\frac{{x}^{2}-2x}{x-lnx}$,(x∈[1,e]),
又g′(x)=$\frac{(x-1)(x+2-2lnx)}{(x-lnx)^{2}}$,
當(dāng)x∈[1,e]時(shí),x-1≥0,lnx≤1,x+2-2lnx>0,
從而g′(x)≥0(僅當(dāng)x=1時(shí)取等號(hào)),
∴g(x)在[1,e]上為增函數(shù),
∴g(x)的最小值為g(1)=-1,
∴a的取值范圍是a≤-1.
故答案為:a≤-1.
點(diǎn)評(píng) 本題考查實(shí)數(shù)的取值范圍的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意構(gòu)造法和導(dǎo)數(shù)性質(zhì)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | -5 | C. | 1 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $f(x)=-\frac{1}{x}$ | B. | f(x)=2x-1 | C. | $f(x)=\frac{{{e^x}-{e^{-x}}}}{2}$ | D. | f(x)=-x3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com