14.已知函數(shù)f(x)=ax5+bx3-x+2(a,b為常數(shù)),且f(-2)=5,則f(2)=( 。
A.-1B.-5C.1D.5

分析 由已知推導(dǎo)出32a+8b=-1,由此能求出f(2)的值.

解答 解:∵函數(shù)f(x)=ax5+bx3-x+2(a,b為常數(shù)),
且f(-2)=5,
∴f(-2)=-32a-8b+2+2=5,
解得32a+8b=-1,
∴f(2)=32a+8b-2+2=-1.
故選:A.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)l是一條直線,α,β,γ是不同的平面,則在下列命題中,真命題的個(gè)數(shù)是(  )個(gè).
①如果α⊥β,那么α內(nèi)一定存在直線平行于β
②如果α不垂直于β,那么α內(nèi)一定不存在直線垂直于β
③如果α⊥γ,β⊥γ,α∩β=l,那么l⊥γ
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-ax+4,x<1}\\{1+\frac{1}{2x},x≥1}\end{array}\right.$在R上單調(diào),則實(shí)數(shù)a的取值范圍為( 。
A.(-∞,2]B.[2,+∞)C.[2,$\frac{7}{2}$]D.[$\frac{7}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.中國傳統(tǒng)文化中很多內(nèi)容體現(xiàn)了數(shù)學(xué)的對(duì)稱美,如圖所示的太極圖是由黑白兩個(gè)魚形紋組成的圓形圖案,充分展現(xiàn)了相互轉(zhuǎn)化、對(duì)稱統(tǒng)一的形式美、和諧美.給出定義:能夠?qū)AO的周長(zhǎng)和面積同時(shí)平分的函數(shù)稱為這個(gè)圓的“優(yōu)美函數(shù)”.給出下列命題:
①對(duì)于任意一個(gè)圓O,其“優(yōu)美函數(shù)”有無數(shù)個(gè);
②函數(shù)f(x)=ln(x2+$\sqrt{{x}^{2}+1}$可以是某個(gè)圓的“優(yōu)美函數(shù)”;
③正弦函數(shù)y=sinx可以同時(shí)是無數(shù)個(gè)圓的“優(yōu)美函數(shù)”;
④函數(shù)y=f(x)是“優(yōu)美函數(shù)”的充要條件為函數(shù)y=f(x)的圖象是中心對(duì)稱圖形.
其中正確的命題是①③(寫出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)y=log3x與y=log${\;}_{\frac{1}{3}}$(9x)的圖象( 。
A.關(guān)于直線x=1對(duì)稱B.關(guān)于直線y=x對(duì)稱
C.關(guān)于直線y=-1對(duì)稱D.關(guān)于直線y=1對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若函數(shù)g(x)=alnx,對(duì)任意x∈[1,e],都有g(shù)(x)≥-x2+(a+2)x恒成立,則實(shí)數(shù)a的取值范圍是a≤-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如果圓(x-a)2+(y-a)2=4上有且僅有兩個(gè)點(diǎn)到原點(diǎn)的距離為2,那么實(shí)數(shù)a的取值范圍為-2$\sqrt{2}$<a<2$\sqrt{2}$且a≠0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.橢圓短軸的一個(gè)端點(diǎn)是(3,0),焦距為4,該橢圓的方程是$\frac{{y}^{2}}{25}+\frac{{x}^{2}}{9}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列函數(shù)為冪函數(shù)的是( 。
A.y=x2-1B.y=$\frac{2}{x}$C.y=$\frac{1}{{x}^{2}}$D.y=-x3

查看答案和解析>>

同步練習(xí)冊(cè)答案