已知(1+ax)(1+x)5的展開式中x2的系數(shù)為20,則a=
 
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專題:二項(xiàng)式定理
分析:由題意可得展開式中x2的系數(shù)為前一項(xiàng)中常數(shù)項(xiàng)與后一項(xiàng)x的二次項(xiàng)乘積,加上第一項(xiàng)x的系數(shù)與第二項(xiàng)x的系數(shù)乘積之和等于20,由此解得a的值.
解答: 解:∵已知(1+ax)(1+x)5=(1+ax)(1+
C
1
5
x+
C
2
5
x2+
C
3
5
x3+
C
4
5
x4+
C
5
5
x5
展開式中x2的系數(shù)為
C
2
5
+a
C
1
5
=20,求得a=2,
故答案為:2.
點(diǎn)評(píng):本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式展開式的通項(xiàng)公式,求展開式中某項(xiàng)的系數(shù),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若a∈R,b∈R,ab=3則(a+b)2的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解不等式:
2+x
2-x
≤3x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若定義在R上的單調(diào)減函數(shù)f(x)滿足:f(a-2sinx)≤f(cos2x)對(duì)一切實(shí)數(shù)x∈[0,
π
2
]恒成立,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓的方程為x2+y2-2xlga+2ylg(10a)+2lg2a+2lga=0(a>0),則圓心所在的直線方程為( 。
A、x-y+1=0
B、x+y+1=0
C、x-y-1=0
D、x+y-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正實(shí)數(shù)a,b滿足a+2b=1,則a2+2b=1,則a2+4b2+
1
ab
的最小值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集為U=R,集合A=(-∞,-3]∪[6,+∞),B=|x|log2(x+2)<4}.
(1)求如圖陰影部分表示的集合;
(2)已知C={x|2a<x<a+1},若C⊆B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個(gè)命題:
①函數(shù)y=
1
x
在R上單調(diào)遞減;
②若函數(shù)y=x2-2ax+3在區(qū)間(-∞,2]上單調(diào)遞減,則a≥2;
③若lg(2x)>lg(x-1),則x>-1;
④若f(x)是定義在R上的奇函數(shù),則f(1-x)+f(x-1)=0.
其中正確的序號(hào)是
 
.(填上所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“1<m<3”是“方程
x2
m-1
+
y2
3-m
=1表示橢圓”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案