已知f(x)是偶函數(shù),且在[0,+∞)上是減函數(shù),若f(lgx)>f(2),則x的取值范圍是
 
考點:奇偶性與單調(diào)性的綜合
專題:函數(shù)的性質(zhì)及應用
分析:根據(jù)函數(shù)奇偶性和單調(diào)性之間的關系將不等式進行轉化即可得到結論.
解答: 解:∵f(x)是偶函數(shù),且在[0,+∞)上是減函數(shù),
∴不等式f(lgx)>f(2)等價為f(|lgx|)>f(2),
即|lgx|<2,
即-2<lgx<2,
解得
1
10
<x<10,
故不等式的解集為(
1
10
,10),
故答案為:(
1
10
,10)
點評:本題主要考查不等式的求解,利用奇偶性和單調(diào)性之間的關系將不等式進行轉化是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知x,y如下表所示,若x和y線性相關,
x12345
y[2.93.74.55.36.1
且線性回歸直線方程是
?
y
=bx+2.4
,則b=( 。
A、0.7B、0.8
C、0.9D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1=1,a2=a,且an+1=k(an+an+2)對任意正整數(shù)都成立,數(shù)列{an}的前n項和為Sn
(1)若k=
1
2
,且S2015=2015a,求a;
(2)是否存在實數(shù)k,使數(shù)列{an}是公比不為1的等比數(shù)列,且任意相鄰三項am,am+1,am+2按某順序排列后成等差數(shù)列,若存在,求出所有k值,若不存在,請說明理由;
(3)若k=-
1
2
,求Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,⊙O是四邊形ABCD的外接圓,BD是⊙O的直徑,AE⊥CD于點E,∠BDA=∠EDA.
(1)證明:AE2=CE•DE;
(2)如果AB=6,AE=3,求BC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩圓M:x2+y2=10和N:x2+y2+2x+2y-14=0.
(1)求兩圓的公共弦所在的直線方程;
(2)求過兩圓交點且圓心在x+2y-3=0上的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設復數(shù)z=(a2+a-2)+(a2-7a+6)i,其中a∈R,當a取何值時,
(1)z∈R;  
(2)z是純虛數(shù);   
(3)
.
z
=28+4i.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求曲線y=sinx,y=cosx與直線x=0,x=
π
2
所圍成的平面圖形(陰影部分)的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

根據(jù)空氣質(zhì)量指數(shù)AQJ(為整數(shù))的不同,可將空氣質(zhì)量分級如下表:
某市2014年11月1日-11月30日,對空氣質(zhì)量指數(shù)AQI進行監(jiān)測,獲得數(shù)據(jù)后得到如條形圖:
(1)市教育局規(guī)定在空氣質(zhì)量類別達到中度污染及以上時學生不宜進行戶外跑步活動,估計該城市本月(按30天計)學生可以進行戶外跑步活動的概率;
(2)在上述30個監(jiān)測數(shù)據(jù)中任取2個,設ξ為空氣質(zhì)量類別顏色為綠色的天數(shù),求ξ的分布列與數(shù)學期望.
AQI(數(shù)值)0~5051~100101~150151~200201~300>300
空氣質(zhì)量級別一級二級三級四級五級六級
空氣質(zhì)量類別優(yōu)輕度污染中度污染重度污染嚴重污染
空氣質(zhì)量類別顏色綠色黃色橙色紅色紫色褐紅色

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=x3-6ax+5在區(qū)間(2,+∞)內(nèi)是增函數(shù);則實數(shù)a的取值范圍是(  )
A、a∈(-∞,4]
B、a∈(-∞,2]
C、a∈[2,+∞)
D、a∈[4,+∞)

查看答案和解析>>

同步練習冊答案