16.設(shè)向量$\overrightarrow{a}$=(a1,a2),$\overrightarrow$=(b1,b2),定義一種向量運(yùn)算$\overrightarrow{a}$?$\overrightarrow$=(a1b1,a2b2),已知向量$\overrightarrow{m}$=(2,$\frac{1}{2}$),$\overrightarrow{n}$=($\frac{π}{3}$,0),點(diǎn)P(x′,y′)在y=sinx的圖象上運(yùn)動(dòng).點(diǎn)Q(x,y)是函數(shù)y=f(x)圖象上的動(dòng)點(diǎn),且滿足$\overrightarrow{OQ}=m?\overrightarrow{OP}$+n(其中O為坐標(biāo)原點(diǎn)),則函數(shù)y=f(x)的值域是( 。
A.$[{-\frac{1}{2},\frac{1}{2}}]$B.$({-\frac{1}{2},\frac{1}{2}})$C.[-1,1]D.(-1,1)

分析 推導(dǎo)出$\overrightarrow{OQ}=m?\overrightarrow{OP}$+n=(2x′+$\frac{π}{3}$,$\frac{1}{2}sin{x}^{'}$),從而得y=$\frac{1}{2}sin(\frac{1}{2}x-\frac{π}{6})$,由此能求出y=f(x)的值域.

解答 解:∵向量$\overrightarrow{a}$=(a1,a2),$\overrightarrow$=(b1,b2),定義一種向量運(yùn)算$\overrightarrow{a}$?$\overrightarrow$=(a1b1,a2b2),
向量$\overrightarrow{m}$=(2,$\frac{1}{2}$),$\overrightarrow{n}$=($\frac{π}{3}$,0),點(diǎn)P(x′,y′)在y=sinx的圖象上運(yùn)動(dòng).
點(diǎn)Q(x,y)是函數(shù)y=f(x)圖象上的動(dòng)點(diǎn),且滿足$\overrightarrow{OQ}=m?\overrightarrow{OP}$+n(其中O為坐標(biāo)原點(diǎn)),
∴$\overrightarrow{OQ}=m?\overrightarrow{OP}$+n=(2x′,$\frac{1}{2}sin{x}^{'}$)+($\frac{π}{3}$,0)
=(2x′+$\frac{π}{3}$,$\frac{1}{2}sin{x}^{'}$),
∴$\left\{\begin{array}{l}{x=2{x}^{'}+\frac{π}{3}}\\{y=\frac{1}{2}sin{x}^{'}}\end{array}\right.$,消去x′,得y=$\frac{1}{2}sin(\frac{1}{2}x-\frac{π}{6})$,
∴y=f(x)的值域是[-$\frac{1}{2},\frac{1}{2}$].
故選:A.

點(diǎn)評 本題考查函數(shù)的值域的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意三角函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)滿足$f(x)=4f({\frac{1}{x}})$,當(dāng)$x∈[{\frac{1}{4},1}]$時(shí),f(x)=lnx,若在$[{\frac{1}{4},4}]$上,方程f(x)=kx有三個(gè)不同的實(shí)根,則實(shí)數(shù)k的取值范圍是( 。
A.$[{-4ln4,-\frac{4}{e}}]$B.[-4ln4,-ln4]C.$[{-\frac{4}{e},-ln4}]$D.$({-\frac{4}{e},-ln4}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.三棱錐P-ABC中,∠APB=∠BPC=∠CPA=60°,則直線PC與平面PAB所成角的余弦值( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)f(x)=$\frac{1}{{lg({a^x}+4{a^{-x}}-k)}}$的定義域?yàn)镽 (常數(shù)a>0,a≠1),則實(shí)數(shù)k的取值范圍為k<4,且k≠3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)的圖象是連續(xù)不斷的,給出x,f(x)對應(yīng)值如表:
x123456
f(x)23.521.4-7.811.5-5.7-12.4
函數(shù)f(x)在區(qū)間[1,6]上的零點(diǎn)至少有( 。
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=cos(x+$\frac{π}{6}$)+sinx.
(I)利用“五點(diǎn)法”,列表并畫出f(x)在[-$\frac{π}{3}$,$\frac{5π}{3}$]上的圖象;
(II)a,b,c分別是△ABC中角A,B,C的對邊.若a=$\sqrt{3}$,f(A)=$\frac{\sqrt{3}}{2}$,b=1,求△ABC的面積.
x+$\frac{π}{3}$0$\frac{π}{2}$π$\frac{3π}{2}$
x-$\frac{π}{3}$$\frac{π}{6}$$\frac{2π}{3}$$\frac{7π}{6}$$\frac{5π}{3}$
f(x)010-10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)f(x)=2x-8的零點(diǎn)是( 。
A.3B.(3,0)C.4D.(4,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)y=2cos($\frac{π}{3}$x+$\frac{π}{6}$)圖象上的最高點(diǎn)與最低點(diǎn)的最短距離是( 。
A.2B.4C.5D.2$\sqrt{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.化簡或求值:
(Ⅰ)2-2×(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$-($\frac{8}{27}$)${\;}^{\frac{1}{3}}$+(3$\frac{1}{3}$)0;
(Ⅱ)lg22+lg2•lg5+$\sqrt{l{g}^{2}2-lg4+1}$.

查看答案和解析>>

同步練習(xí)冊答案