函數(shù)f(x)=lnx+
1
2
的零點所在的區(qū)間是
 
考點:函數(shù)零點的判定定理
專題:函數(shù)的性質(zhì)及應用
分析:利用根的存在定理,分別判斷,各區(qū)間端點處函數(shù)值的符合是否相反,從而確定零點所在的區(qū)間.
解答: 解:函數(shù)f(x)是增函數(shù),
∵f(1)=ln1+
1
2
=
1
2
>0,當x→0時,f(x)<0,
∴函數(shù)f(x)零點所在的區(qū)間是(0,1),
故答案為:(0,1)
點評:本題主要考查函數(shù)與方程的關系,利用根的存在定理去判斷函數(shù)零點所在區(qū)間,是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

解下列不等式:
(1)x2-5x-6>0;
(2)1+2x-x2≥0;
(3)|2x-1|>3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知-2<x<2,求y=2
10
3
-x
4-x2
的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用e,f,g三個不同的字母組成一個含有n+1(n∈N+)個字母的字符串,要求由字母e開始,相鄰兩個字母不能相同,例如n=1時,排出的字符串為ef,eg:n=2時,排出的字符串是efe,ege,efg,egf,…在這種含有n+1個字母的字符串中,記排在最后一個的字母仍然是e的字符串的個數(shù)為an
(1)求a1,a2,a3;
(2)求數(shù)列{an}的通項公式;
(3)證明:
1
a2
+
1
a3
+…+
1
an-1
+
1
an
3
2
(n≥2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在圓C:x2+y2=10內(nèi)隨機撒一粒豆子,則豆子落在陰影部分的概率是( 。
A、1-
2
B、
2
5
C、
4
D、
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C的圓心在x軸上,曲線x2=2y在A(2,2)處的切線l恰與圓C在A點處相切,則圓C的圓心坐標為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某中學要從高三年級中選出一名同學參加省里舉行的化學試驗競賽,經(jīng)過分組選撥,最后甲和乙兩位同學入圍,學校決定進行五次試驗比賽確定最終人選,已知甲五次試驗的得分情況分別為5,8,9,9,9;乙五次試驗的得分情況分別為6,7,8,9,10.你認為選出哪位同學參加競賽比較合適些?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知M是△ABC內(nèi)的一點(不含邊界),且
AB
AC
=2
3
,∠BAC=30°,若△MBC,△MCA和△MAB的面積分別為x,y,z,則
9
x+y
+
4
z
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某工廠用A、B兩種配件生產(chǎn)甲、乙兩種產(chǎn)品,每生產(chǎn)一件甲產(chǎn)品使用4個A配件耗時1h,每生產(chǎn)一件乙產(chǎn)品使用4個B配件耗時2h,該廠每天最多可以從配件廠獲得16個A配件和12個B配件,若生產(chǎn)一件甲產(chǎn)品獲利2萬元,生產(chǎn)一件乙產(chǎn)品獲利3萬元,按每天工作8h計算,怎么安排生產(chǎn)才能獲得最大利潤.
甲(件)乙(件)限額
A(個)4個/件16個
B(個)4個/件12個
耗時(h)1h/件2h/件8h
獲利(萬元)2萬元/件3萬元/件

查看答案和解析>>

同步練習冊答案