分析 (I)設(shè)曲線C上任意一點(diǎn)P(x,y),則點(diǎn)Q(x,2y)在圓O上,代入⊙O的方程即可得出直角坐標(biāo)方程,進(jìn)而得到參數(shù)方程.
(II)直線方程與橢圓方程聯(lián)立解出交點(diǎn)坐標(biāo),利用中點(diǎn)坐標(biāo)公式即可得出線段AB的中點(diǎn)N的坐標(biāo),設(shè)直線l的傾斜角為α,則$tanα=\frac{1}{2}$,利用倍角公式可得tan2α.利用點(diǎn)斜式可得直線m的方程,進(jìn)而得出極坐標(biāo)方程.
解答 解:(I)設(shè)曲線C上任意一點(diǎn)P(x,y),則點(diǎn)Q(x,2y)在圓O上,
∴${x^2}+{({2y})^2}=4,即\frac{x^2}{4}+{y^2}=1$,
∴曲線C的參數(shù)方程是$\left\{{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}({θ為參數(shù)})}\right.$.
(II)聯(lián)立$\left\{\begin{array}{l}{x-2y+2=0}\\{{x}^{2}+4{y}^{2}=4}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=-2}\\{y=0}\end{array}\right.$,或$\left\{\begin{array}{l}{x=0}\\{y=1}\end{array}\right.$.
得A(-2,0),B(0,1),∴線段AB的中點(diǎn)N的坐標(biāo)$(-1,\frac{1}{2})$,
設(shè)直線l的傾斜角為α,則$tanα=\frac{1}{2}$,$tan2α=\frac{2tanα}{{1-{{tan}^2}α}}=\frac{{2×\frac{1}{2}}}{{1-\frac{1}{4}}}=\frac{4}{3}$,
∴直線m的方程為:y=$\frac{4}{3}$(x+1)+$\frac{1}{2}$,即8x-6y+11=0,
∴直線m的極坐標(biāo)方程為:8ρcosθ-6ρsinθ+11=0.
點(diǎn)評(píng) 本題考查了坐標(biāo)變換、橢圓的參數(shù)方程、直線與圓相交問題、中點(diǎn)坐標(biāo)公式、倍角公式、點(diǎn)斜式、直角坐標(biāo)方程化為極坐標(biāo)方程,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-π,-$\frac{5π}{6}$] | B. | [-$\frac{5π}{6}$,-$\frac{π}{6}$] | C. | [-$\frac{π}{3}$,0] | D. | [-$\frac{π}{6}$,0] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ex | B. | ex+$\frac{1}{3}$ | C. | $\frac{1}{3}$ | D. | ex-$\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com