【題目】已知f(x)=ax﹣lnx(x∈(0,e]),其中e是自然常數(shù),a∈R.
(Ⅰ)當(dāng)a=1時,求f(x)的單調(diào)區(qū)間和極值;
(Ⅱ)是否存在實(shí)數(shù)a,使f(x)的最小值是3,若存在,求出a的值;若不存在,說明理由.

【答案】解:(I)當(dāng)a=1時,f(x)=x﹣lnx, 則
且x∈(0,e]得x∈[1,e)單調(diào)遞增;
且x∈(0,e]得x∈(0,1)單調(diào)遞減;
當(dāng)x=1時取到極小值1;
(II)
①當(dāng)a≤0時,f′(x)<0,f(x)在x∈(0,e)上單調(diào)遞減f(e)<0,與題意不符;
②當(dāng)a>0時,f′(x)=0的根為
當(dāng) 時, ,解得a=e2
③當(dāng) 時,f′(x)<0,f(x)在x∈(0,e)上單調(diào)遞減f(e)<0,與題意不符;)
綜上所述a=e2
【解析】(I)把a(bǔ)=1代入原函數(shù),求出其導(dǎo)函數(shù),即可求f(x)的單調(diào)性、極值;(II)先求出其導(dǎo)函數(shù),通過分類討論分別求出導(dǎo)數(shù)為0的根,以及單調(diào)性和極值,再與f(x)的最小值是3相結(jié)合,即可得出結(jié)論.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識,掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減,以及對函數(shù)的極值與導(dǎo)數(shù)的理解,了解求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】A,B兩名同學(xué)在5次數(shù)學(xué)考試中的成績統(tǒng)計如下面的莖葉圖所示,若A,B兩人的平均成績分別是xA , xB , 觀察莖葉圖,下列結(jié)論正確的是(
A.xA<xB , B比A成績穩(wěn)定
B.xA>xB , B比A成績穩(wěn)定
C.xA<xB , A比B成績穩(wěn)定
D.xA>xB , A比B成績穩(wěn)定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=x3﹣ax2﹣a2x+1,(a∈R).
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)的圖象不存在與l:y=﹣x平行或重合的切線,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集U=R,集合A={x|﹣1<x<1},B={x|2≤4x≤8},C={x|a﹣4<x≤2a﹣7}.
(1)求(UA)∩B;
(2)若A∩C=C,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某養(yǎng)雞場是一面靠墻,三面用鐵絲網(wǎng)圍成的矩形場地,如果鐵絲網(wǎng)長40m,那么圍成的場地面積最大為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】計算
(1)lg 8+lg 125﹣( 2+16 +( ﹣1)0
(2)已知tanα=3,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=ln(1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的導(dǎo)函數(shù).
(1)g1(x)=g(x),gn+1(x)=g(gn(x)),n∈N+ , 求g1(x),g2(x),g3(x),并猜想gn(x)的表達(dá)式(不必證明);
(2)若f(x)≥ag(x)恒成立,求實(shí)數(shù)a的取值范圍;
(3)設(shè)n∈N+ , 比較g(1)+g(2)+…+g(n)與n﹣f(n)的大小,并用數(shù)學(xué)歸納法加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義域?yàn)镽的偶函數(shù)f(x)滿足對x∈R,有f(x+2)=f(x)﹣f(1),且當(dāng)x∈[2,3]時,f(x)=﹣2x2+12x﹣18,若函數(shù)y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三個零點(diǎn),則a的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠有一批貨物由海上從甲地運(yùn)往乙地,已知輪船的最大航行速度為60海里/小時,甲地至乙地之間的海上航行距離為600海里,每小時的運(yùn)輸成本由燃料費(fèi)和其它費(fèi)用組成,輪船每小時的燃料費(fèi)與輪船速度的平方成正比,比例系數(shù)為05,其它費(fèi)用為每小時1250元.

1)請把全程運(yùn)輸成本(元)表示為速度(海里/小時)的函數(shù),并指明定義域;

2)為使全程運(yùn)輸成本最小,輪船應(yīng)以多大速度行駛?

查看答案和解析>>

同步練習(xí)冊答案