【題目】設函數.
(1)求的單調區(qū)間;
(2)當時,若對,都有()成立,求的最大值.
【答案】(1)答案不唯一,具體見解析(2)0
【解析】
(1),.對分類討論,可得其單調區(qū)間.
(2)當時,對,都有恒成立, ,令,只需,利用導數研究其單調性即可得出.
解:(1),.
當時,在恒成立,在是單減函數.
當時,令,解之得.
從而,當變化時,,隨的變化情況如下表:
- | 0 | + | |
單調遞減 | 單調遞增 |
由上表中可知,在是單減函數,在是單增函數.
綜上,當時,的單減區(qū)間為;
當時,的單減區(qū)間為,單增區(qū)間為.
(2)當,為整數,且當時,恒成立
.令,只需;
又,
由(1)得在單調遞增,且,
所以存在唯一的,使得,
當,即單調遞減,
當,即單調遞增,
所以時,取得極小值,也是最小值,當時,
而在為增函數,,
即.而,
,即所求的最大值為0.
科目:高中數學 來源: 題型:
【題目】如圖所示,在底面是菱形的四棱錐中,,點E在PD上,且.
(1)證明:平面ABCD;
(2)求二面角的大。
(3)棱PC上是否存在一點F,使平面AEC?證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】阿基米德(公元前287年—公元前212年),偉大的古希臘哲學家、數學家和物理學家,他死后的墓碑上刻著一個“圓柱容球”的立體幾何圖形,為紀念他發(fā)現“圓柱內切球的體積是圓柱體積的,且球的表面積也是圓柱表面積的”這一完美的結論.已知某圓柱的軸截面為正方形,其表面積為,則該圓柱的內切球體積為( )
A.B.C.D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在十九大“建設美麗中國”的號召下,某省級生態(tài)農業(yè)示范縣大力實施綠色生產方案,對某種農產品的生產方式分別進行了甲、乙兩種方案的改良。為了檢查甲、乙兩種方案的改良效果,隨機在這兩種方案中各任意抽取了40件產品作為樣本逐件稱出它們的重量(單位:克),重量值落在之間的產品為合格品,否則為不合格品。下表是甲、乙兩種方案樣本頻數分布表。
產品重量 | 甲方案頻數 | 乙方案頻數 |
6 | 2 | |
8 | 12 | |
14 | 18 | |
8 | 6 | |
4 | 2 |
(1)根據上表數據求甲(同組中的重量值用組中點數值代替)方案樣本中40件產品的平均數和中位數
(2)由以上統(tǒng)計數據完成下面列聯表,并回答有多大把握認為“產品是否為合格品與改良方案的選擇有關”.
甲方案 | 乙方案 | 合計 | |
合格品 | |||
不合格品 | |||
合計 |
參考公式:,其中.
臨界值表:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.814 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系x-O-y中,已知曲線E:(t為參數)
(1)在極坐標系O-x中,若A、B、C為E上按逆時針排列的三個點,△ABC為正三角形,其中A點的極角θ=,求B、C兩點的極坐標;
(2)在直角坐標系x-O-y中,已知動點P,Q都在曲線E上,對應參數分別為t=α與t=2α (0<α<2π),M為PQ的中點,求 |MO| 的取值范圍
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,四棱錐S﹣ABCD中,四邊形ABCD為平行四邊形,BA⊥AC,SA⊥AD,SC⊥CD.
(Ⅰ)求證:AC⊥SB;
(Ⅱ)若AB=AC=SA=3,E為線段BC的中點,F為線段SB上靠近B的三等分點,求直線SC與平面AEF所成角的正弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com